Coates P J, Save V, Ansari B, Hall P A
Department of Pathology, Ninewells Hospital and Medical School, University of Dundee, U.K.
J Pathol. 1995 May;176(1):19-26. doi: 10.1002/path.1711760105.
We describe the development and application of in situ end labelling (ISEL) to identity sites of damaged DNA in the nuclei of individual cells. In cell culture, exposure to a variety of genotoxic agents induced a dose and time-dependent increase in nuclear labelling. In addition, examination of histological sections of human skin exposed to solar-stimulated UV light showed ISEL in both keratinocytes and superficial dermal cells, with the same spatial and temporal distribution as that of a marker of DNA repair, PCNA (proliferating cell nuclear antigen). Using co-localization techniques and confocal microscopy, we found increased levels of p53 in many ISEL-positive cells in vitro, with a similar distribution of labelling in the nucleus. This observation provides further evidence for a direct role of p53 in the recognition of damaged DNA. Thus, ISEL should prove a convenient method for demonstrating genotoxic insult in individual cells and in histological material, and may have value in toxicological screening. This high-resolution microscopy technique can also be used to compare the spatial distribution of various proteins implicated in the response to DNA damage with the sites of the lesion.