Suppr超能文献

用于识别蛋白质二级结构的氨基酸简单物理化学性质的模糊聚类分析。

Fuzzy cluster analysis of simple physicochemical properties of amino acids for recognizing secondary structure in proteins.

作者信息

Mocz G

机构信息

Pacific Biomedical Research Center, University of Hawaii, Honolulu 96822, USA.

出版信息

Protein Sci. 1995 Jun;4(6):1178-87. doi: 10.1002/pro.5560040616.

Abstract

Fuzzy cluster analysis has been applied to the 20 amino acids by using 65 physicochemical properties as a basis for classification. The clustering products, the fuzzy sets (i.e., classical sets with associated membership functions), have provided a new measure of amino acid similarities for use in protein folding studies. This work demonstrates that fuzzy sets of simple molecular attributes, when assigned to amino acid residues in a protein's sequence, can predict the secondary structure of the sequence with reasonable accuracy. An approach is presented for discriminating standard folding states, using near-optimum information splitting in half-overlapping segments of the sequence of assigned membership functions. The method is applied to a nonredundant set of 252 proteins and yields approximately 73% matching for correctly predicted and correctly rejected residues with approximately 60% overall success rate for the correctly recognized ones in three folding states: alpha-helix, beta-strand, and coil. The most useful attributes for discriminating these states appear to be related to size, polarity, and thermodynamic factors. Van der Waals volume, apparent average thickness of surrounding molecular free volume, and a measure of dimensionless surface electron density can explain approximately 95% of prediction results. hydrogen bonding and hydrophobicity induces do not yet enable clear clustering and prediction.

摘要

基于65种物理化学性质,模糊聚类分析已应用于20种氨基酸的分类。聚类结果——模糊集(即带有相关隶属函数的经典集)为蛋白质折叠研究提供了一种新的氨基酸相似性度量方法。这项工作表明,当将简单分子属性的模糊集分配给蛋白质序列中的氨基酸残基时,可以以合理的准确度预测该序列的二级结构。提出了一种方法,通过在分配的隶属函数序列的半重叠片段中使用近乎最优的信息分割来区分标准折叠状态。该方法应用于252个非冗余蛋白质数据集,对于正确预测和正确拒绝的残基,匹配率约为73%,对于α-螺旋、β-链和无规卷曲三种折叠状态下正确识别的残基,总体成功率约为60%。区分这些状态最有用的属性似乎与大小、极性和热力学因素有关。范德华体积、周围分子自由体积的表观平均厚度以及无量纲表面电子密度的度量可以解释约95%的预测结果。氢键和疏水诱导作用尚不能实现清晰的聚类和预测。

相似文献

5
Using supervised fuzzy clustering to predict protein structural classes.使用监督模糊聚类预测蛋白质结构类别。
Biochem Biophys Res Commun. 2005 Aug 26;334(2):577-81. doi: 10.1016/j.bbrc.2005.06.128.
7
Accurate prediction of protein secondary structural class with fuzzy structural vectors.
Protein Eng. 1995 Jun;8(6):505-12. doi: 10.1093/protein/8.6.505.

本文引用的文献

3
Secondary structure assignment for alpha/beta proteins by a combinatorial approach.
Biochemistry. 1983 Oct 11;22(21):4894-904. doi: 10.1021/bi00290a005.
6
Prediction of protein conformation.蛋白质构象预测
Biochemistry. 1974 Jan 15;13(2):222-45. doi: 10.1021/bi00699a002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验