Suppr超能文献

在 kainic 酸损伤海马体的 CA1 区域中,NMDA 介导的突触反应的长期抑制与 AMPA 受体介导的突触反应的长期增强同时出现。

Simultaneous expression of long-term depression of NMDA and long-term potentiation of AMPA receptor-mediated synaptic responses in the CA1 area of the kainic acid-lesioned hippocampus.

作者信息

Bernard C L, Wheal H V

机构信息

Department of Physiology and Pharmacology, University of Southampton, UK.

出版信息

Eur J Neurosci. 1995 Jul 1;7(7):1651-5. doi: 10.1111/j.1460-9568.1995.tb01160.x.

Abstract

This study investigates the plasticity of the excitatory synapses in an experimental model of epilepsy, the kainic acid-lesioned rat hippocampus. Stimulation of afferents in the CA1 area of lesioned hippocampi produced an epileptiform burst of action potentials, with an underlying synaptic potential composed of mixed alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA; 80%) and N-methyl-D-aspartate (NMDA; 20%) receptor-mediated components. Tetanic stimulation yielded a long-term potentiation (LTP) of the mixed AMPA/NMDA receptor-mediated population excitatory postsynaptic potentials. However, the same type of tetanus resulted in a long-term depression (LTD) of pharmacologically isolated NMDA receptor-mediated responses. This LTD occurred independently of the antagonism of AMPA receptors. This suggests that tetanic stimulation produced LTP of AMPA and LTD of NMDA receptor-mediated responses simultaneously. Finally, both LTP and LTD were shown to be NMDA dependent. This property has profound functional implications for the control of excitatory networks in temporal lobe epilepsy.

摘要

本研究在癫痫实验模型——海藻酸损伤大鼠海马体中,研究兴奋性突触的可塑性。刺激损伤海马体CA1区的传入神经,产生了癫痫样动作电位爆发,其潜在的突触电位由混合的α-氨基-3-羟基-5-甲基-4-异恶唑丙酸(AMPA;80%)和N-甲基-D-天冬氨酸(NMDA;20%)受体介导的成分组成。强直刺激产生了混合AMPA/NMDA受体介导的群体兴奋性突触后电位的长期增强(LTP)。然而,相同类型的强直刺激导致药理学分离的NMDA受体介导反应的长期抑制(LTD)。这种LTD的发生与AMPA受体的拮抗作用无关。这表明强直刺激同时产生了AMPA的LTP和NMDA受体介导反应的LTD。最后,LTP和LTD均显示为NMDA依赖性。这一特性对颞叶癫痫中兴奋性网络的控制具有深远的功能意义。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验