Thaung J, Beckman C, Abrahamsson M, Sjöstrand J
Department of Clinical Neuroscience, Göteborg University, Sahlgren's University Hospital, Sweden.
Invest Ophthalmol Vis Sci. 1995 Oct;36(11):2313-7.
Paulsson and Sjöstrand have suggested that the light scattering factor (LSF) can be estimated by using the equation: LSF = L/E (M2/M1-1). Here L is the space average luminance of the target, E is the illuminance of the glare source, and M2 and M1 are modulation contrast thresholds in the presence and absence of the glare source. To compensate for change of adaptation. Abrahamsson and Sjöstrand later modified the above equation by introducing a correction factor (CF): LSF = L/E ((CF) (M2/M1-1). The purpose of this study is to analyze the validity of the above equations.
The importance of stimulus geometry, contrast definition, background luminance, and glare illumination is studied through theoretical analysis and comparison with earlier studies. Stimulus geometry and contrast definition are studied through optical modeling. Adaptation is modeled according to the laws of Weber and DeVries-Rose.
The choice of contrast definition may corrupt the result by a factor of 2. At background luminance levels above approximately 10 cd/m2, the Paulsson-Sjöstrand equation agrees well with theory. At lower background levels, the Abrahamsson-Sjöstrand equation is used with correction factors derived from adaptation measurements. Using this equation and earlier published data from glare testing performed at 2 cd/m2, the results are found to be in fair agreement with the light scattering theory.
Glare testing using the Paulsson-Sjöstrand equation is found to be valid as long as the measurements are performed at high luminance levels (above 10 cd/m2), with targets of low spatiotemporal frequencies (e.g., 2 cpd and 1 Hz) and with the use of a properly chosen definition of contrast. At lower luminance levels, the Abrahamsson-Sjöstrand equation may be used with well-derived correction factors.
保尔松和舍斯特兰德提出,光散射因子(LSF)可通过以下公式估算:LSF = L/E (M2/M1 - 1)。其中L是目标的空间平均亮度,E是眩光光源的照度,M2和M1分别是存在和不存在眩光光源时的调制对比度阈值。为了补偿适应性变化,亚伯拉罕松和舍斯特兰德后来通过引入一个校正因子(CF)对上述公式进行了修正:LSF = L/E ((CF) (M2/M1 - 1)。本研究的目的是分析上述公式的有效性。
通过理论分析以及与早期研究进行比较,研究了刺激几何形状、对比度定义、背景亮度和眩光照明的重要性。通过光学建模研究了刺激几何形状和对比度定义。根据韦伯定律和德弗里斯 - 罗斯定律对适应性进行建模。
对比度定义的选择可能会使结果产生两倍的偏差。在背景亮度水平高于约10 cd/m²时,保尔松 - 舍斯特兰德公式与理论吻合良好。在较低背景水平下,使用从适应性测量得出的校正因子的亚伯拉罕松 - 舍斯特兰德公式。使用该公式以及先前在2 cd/m²下进行的眩光测试公布的数据,结果与光散射理论相当吻合。
只要在高亮度水平(高于10 cd/m²)下进行测量,使用低时空频率的目标(例如,2 cpd和1 Hz)并使用适当选择的对比度定义,使用保尔松 - 舍斯特兰德公式进行眩光测试是有效的。在较低亮度水平下,可以使用经过良好推导的校正因子的亚伯拉罕松 - 舍斯特兰德公式。