Wedel B, Harteneck C, Foerster J, Friebe A, Schultz G, Koesling D
Institut für Pharmakologie, Freie Universität Berlin, Federal Republic of Germany.
J Biol Chem. 1995 Oct 20;270(42):24871-5. doi: 10.1074/jbc.270.42.24871.
Soluble guanylyl cyclase is a heterodimer consisting of an alpha and beta subunit and stimulation occurs upon binding of NO to a prosthetic group. Little is known about the localization of catalytic and regulatory domains within the subunits of soluble guanylyl cyclase. We used deletion mutagenesis to identify the regions of alpha 1 and beta 1 subunits that are responsible for cGMP production or NO-heme-mediated activation. The amino terminus of the beta 1 subunit was necessary for NO stimulation since deletion of the 64 NH2-terminal amino acids resulted in a mutant with intact basal activity but complete loss of NO activation. The amino terminus of the alpha 1 subunit also appeared to be essential for NO sensitivity since deletion of 131 NH2-terminal amino acids of alpha 1 led to markedly reduced NO activation. These results suggest that NH2-terminal regions of alpha 1 and beta 1 are involved in NO-heme-mediated signal transduction. The NH2 terminally truncated beta 1 subunit exerted a dominant negative effect exclusively on the NO-stimulated activity of the wild type enzyme, further underlining that the regulatory domain is located within the NH2 terminus of the enzyme. Aside for the structural implications, the mutant represents a powerful tool to investigate nitric oxide-sensitive signaling pathways. Coexpression of the COOH-terminal halves of alpha 1 and beta 1 were sufficient for basal cGMP production while either of the halves expressed alone was inactive. Therefore the COOH-terminal regions appear to contain sufficient information for dimerization and basal enzymatic activity. Thus, we provide the first evidence that the regulatory and catalytic properties of soluble guanylyl cyclase can be attributed to different regions of the subunits and that the catalytic domain can be functionally expressed separately from the NH2-terminal regulatory domain. Taken together with findings on the membrane bound enzyme form, guanylyl cyclases, appear to resemble fusion proteins where different regulatory domains have been joined with a common cGMP-forming segment.
可溶性鸟苷酸环化酶是一种由α和β亚基组成的异源二聚体,当一氧化氮与辅基结合时会发生刺激作用。关于可溶性鸟苷酸环化酶亚基内催化和调节结构域的定位知之甚少。我们使用缺失诱变来鉴定α1和β1亚基中负责cGMP产生或一氧化氮 - 血红素介导的激活的区域。β1亚基的氨基末端对于一氧化氮刺激是必需的,因为缺失64个氨基末端氨基酸会产生一个具有完整基础活性但完全丧失一氧化氮激活能力的突变体。α1亚基的氨基末端对于一氧化氮敏感性似乎也至关重要,因为缺失α1的131个氨基末端氨基酸会导致一氧化氮激活显著降低。这些结果表明,α1和β1的氨基末端区域参与一氧化氮 - 血红素介导的信号转导。氨基末端截短的β1亚基仅对野生型酶的一氧化氮刺激活性发挥显性负效应,进一步强调调节结构域位于酶的氨基末端内。除了结构方面的意义外,该突变体是研究一氧化氮敏感信号通路的有力工具。α1和β1的羧基末端半段共同表达足以产生基础cGMP,而单独表达任何一个半段均无活性。因此,羧基末端区域似乎包含足以实现二聚化和基础酶活性的信息。因此,我们首次证明可溶性鸟苷酸环化酶的调节和催化特性可归因于亚基的不同区域,并且催化结构域可以与氨基末端调节结构域分开进行功能表达。结合关于膜结合酶形式的研究结果,鸟苷酸环化酶似乎类似于融合蛋白,其中不同的调节结构域与一个共同的cGMP形成片段相连。