Suppr超能文献

通过连续解剖匹配点和图像相关性进行数字门静脉图像配准,以实现实时连续野对准验证。

Digital portal image registration by sequential anatomical matchpoint and image correlations for real-time continuous field alignment verification.

作者信息

McParland B J, Kumaradas J C

机构信息

Department of Clinical Physics, Ontario Cancer Institute/Princess Margaret Hospital, Toronto, Canada.

出版信息

Med Phys. 1995 Jul;22(7):1063-75. doi: 10.1118/1.597592.

Abstract

Detection of radiotherapy field misalignments with electronic portal imaging devices requires the precise initial registration of the digital portal image with a reference image indicating the prescribed field alignment. Moreover, for real-time continuous detection this registration must be performed rapidly--arguably within 250 ms. The quality of this registration is sensitive to the ability of the user to accurately identify corresponding anatomical landmarks in the image pair. To improve the accuracy of the registration and, ultimately, that of the field misalignment measurement, we have developed a sequential digital portal image registration method using both user-identified anatomical matchpoints and image information. A first pass generates registration parameters from user-provided matchpoint coordinates and explicitly accounts for the uncertainty in matchpoint identification. The second pass uses both the initial registration parameters and image information to further improve the registration quality by maximizing cross correlations between segments of the image pair. As this registration method does not use massive matrix/vector computations common to other algorithms, it is inherently faster and well-suited for real-time field placement error detection. On a platform representative of those controlling many commercial electronic portal imaging devices (486 CPU), this algorithm registers portal images in times of less than 6 ms per matchpoint with errors of less than 2% in magnification, 0.5 degree in in-plane rotation, and less than 1 pixel dimension in in-plane translation. As the algorithm assumes a rigid-body geometry, it is sensitive to out-of-plane rotations. A quantitative analysis of this algorithm is presented, indicates its accuracy, and describes its sensitivity to out-of-plane rotations.

摘要

利用电子射野影像装置检测放射治疗野的不对准,需要将数字射野图像与指示规定野对准的参考图像进行精确的初始配准。此外,对于实时连续检测,这种配准必须快速完成,理论上要在250毫秒内完成。这种配准的质量对用户在图像对中准确识别相应解剖标志的能力很敏感。为了提高配准的准确性,并最终提高野不对准测量的准确性,我们开发了一种序贯数字射野图像配准方法,该方法同时使用用户识别的解剖匹配点和图像信息。第一步根据用户提供的匹配点坐标生成配准参数,并明确考虑匹配点识别中的不确定性。第二步利用初始配准参数和图像信息,通过最大化图像对各段之间的互相关性来进一步提高配准质量。由于这种配准方法不使用其他算法常见的大规模矩阵/向量计算,它本质上更快,非常适合实时野位置误差检测。在一个代表控制许多商用电子射野影像装置的平台(486 CPU)上,该算法以每个匹配点小于6毫秒的时间配准射野图像,放大误差小于2%,面内旋转误差小于0.5度,面内平移误差小于1像素尺寸。由于该算法假设为刚体几何形状,它对面外旋转很敏感。本文给出了对该算法的定量分析,表明了其准确性,并描述了其对面外旋转的敏感性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验