Suppr超能文献

一种用于门静脉图像与数字重建射线照片配准的灰度图像对齐算法。

A grey-level image alignment algorithm for registration of portal images and digitally reconstructed radiographs.

作者信息

Hristov D H, Fallone B G

机构信息

Medical Physics Unit, McGill University, Montreal General Hospital, Canada.

出版信息

Med Phys. 1996 Jan;23(1):75-84. doi: 10.1118/1.597743.

Abstract

An algorithm for automatic registration of pairs of portal images based on image correlation is presented. It uses a fast-Fourier-transform-based cross-correlation operator to find the optimal registration, accounting for both in-plane translations and rotations. Different cross-correlation operators have been tested: the Pearson linear correlation coefficient has been implemented by fast Fourier transform and its performance has been compared to that of the more conventional normalized cross-correlation. A sequential approach has been applied to speed up the registration considerably without degrading the performance of the algorithm. The algorithm has also been applied to the automatic registration of portal images to digitally reconstructed radiographs (DRRs), which have been modified to resemble megavoltage images. The results are indicative of the feasibility of this approach to the inspection of patient setup in radiation therapy.

摘要

提出了一种基于图像相关性的门静脉图像对自动配准算法。它使用基于快速傅里叶变换的互相关算子来找到最佳配准,同时考虑平面内平移和旋转。已经测试了不同的互相关算子:通过快速傅里叶变换实现了皮尔逊线性相关系数,并将其性能与更传统的归一化互相关的性能进行了比较。应用了一种顺序方法来显著加快配准速度,而不会降低算法的性能。该算法还被应用于门静脉图像与数字重建射线照片(DRR)的自动配准,这些DRR已被修改以类似于兆伏图像。结果表明了这种方法在放射治疗中检查患者摆位的可行性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验