Suppr超能文献

寻找多维参考值的“自然”向量基。

Finding the "natural" vector bases for multidimensional reference values.

作者信息

Karjalainen E J, Karjalainen U P

机构信息

Department of Clinical Chemistry, University of Helsinki, Finland.

出版信息

Scand J Clin Lab Invest Suppl. 1995;222:61-7. doi: 10.3109/00365519509088451.

Abstract

The concept of reference values can be extended to multidimensional results. A probability function describes the relative density of the observations in the multivariate space. When the density of a given point is measured relative to all other points, we get an estimate of the density rank of a given point. If the rank of a point is lower than 95 per cent of all points, the multidimensional result is outside the multidimensional reference range. The single-dimensional case is a special case of this general concept. Many observations are needed to define multidimensional distributions. However, less points are needed if the dimensionality of the data matrix is reduced by statistical methods such as principal component analysis (PCA). Also other vector bases than the orthogonal solution produced by PCA are possible, and all of them compress data equally well. So the choice must be based on other criteria than compression. We propose using a vector basis that consists of positive numbers. The positive vectors can be found by direct methods such as Alternating Regression (AR) or they can be modified from the results of the PCA. Positive vectors resemble the spectra that are familiar in chemistry and physics. They are a "natural" way to describe multidimensional results. It is easier to name the positive vectors than the purely statistical vectors of PCA. To obtain a unique positive solution, additional constraints besides positivity are needed.

摘要

参考值的概念可以扩展到多维结果。概率函数描述了多元空间中观测值的相对密度。当相对于所有其他点测量给定点的密度时,我们得到该给定点密度等级的估计值。如果一个点的等级低于所有点的95%,则多维结果超出多维参考范围。单维情况是这个一般概念的特殊情况。定义多维分布需要许多观测值。然而,如果通过主成分分析(PCA)等统计方法降低数据矩阵的维度,则所需的点数会减少。除了PCA产生的正交解之外,其他向量基也是可能的,并且它们都能同样好地压缩数据。因此,选择必须基于除压缩之外的其他标准。我们建议使用由正数组成的向量基。正向量可以通过交替回归(AR)等直接方法找到,或者可以从PCA的结果中进行修改。正向量类似于化学和物理学中熟悉的光谱。它们是描述多维结果的“自然”方式。给正向量命名比给PCA的纯统计向量命名更容易。为了获得唯一的正解,除了正值之外还需要额外的约束条件。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验