Suppr超能文献

关于易于解释的矩形多元参考区域。

On easily interpretable multivariate reference regions of rectangular shape.

作者信息

Wellek Stefan

机构信息

Department of Biostatistics, Central Institute of Mental Health Mannheim, University of Heidelberg, Mannheim, Germany.

出版信息

Biom J. 2011 May;53(3):491-511. doi: 10.1002/bimj.201000147.

Abstract

Till now, multivariate reference regions have played only a marginal role in the practice of clinical chemistry and laboratory medicine. The major reason for this fact is that such regions are traditionally determined by means of concentration ellipsoids of multidimensional Gaussian distributions yielding reference limits which do not allow statements about possible outlyingness of measurements taken in specific diagnostic tests from a given patient or subject. As a promising way around this difficulty we propose to construct multivariate reference regions as p-dimensional rectangles or (in the one-sided case) rectangular half-spaces whose edges determine univariate percentile ranges of the same probability content in each marginal distribution. In a first step, the corresponding notion of a quantile of a p-dimensional probability distribution of any type and shape is made mathematically precise. Subsequently, both parametric and nonparametric procedures of estimating such a quantile are described. Furthermore, results on sample-size calculation for reference-centile studies based on the proposed definition of multivariate quantiles are presented generalizing the approach of Jennen-Steinmetz and Wellek.

摘要

到目前为止,多变量参考区间在临床化学和检验医学实践中仅发挥了边缘作用。这一事实的主要原因是,此类区间传统上是通过多维高斯分布的浓度椭球来确定的,由此得出的参考限值无法对特定诊断测试中给定患者或受试者的测量值可能存在的异常情况作出说明。作为解决这一难题的一种有前景的方法,我们建议将多变量参考区间构建为p维矩形或(在单侧情况下)矩形半空间,其边界确定每个边际分布中具有相同概率含量的单变量百分位数范围。第一步,对任何类型和形状的p维概率分布的分位数的相应概念进行数学精确化。随后,描述了估计此类分位数的参数和非参数程序。此外,基于所提出的多变量分位数定义,给出了参考百分位数研究的样本量计算结果,推广了詹嫩 - 施泰因梅茨和韦勒克的方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验