Soliven B, Szuchet S
Department of Neurology, University of Chicago, Illinois 60637, USA.
Int J Dev Neurosci. 1995 Jun-Jul;13(3-4):351-67. doi: 10.1016/0736-5748(95)00019-d.
We have used a combination of electrophysiological and biochemical approaches to investigate the effects and the mechanisms of action of tumor necrosis factor-alpha (TNF-alpha) on cultured oligodendrocytes (OLGs). Our studies have led to the following conclusions: (1) prolonged exposure of mature ovine OLGs to TNF-alpha leads to inhibition of process extension, membrane depolarization and a decrease in the amplitudes of both inwardly rectifying and outward K+ currents; (2) brief exposure of OLGs to TNF-alpha does not elicit membrane depolarization or consistent changes in cytosolic Ca2+ levels; (3) incubation of OLGs with TNF-alpha for 1 hr results in inhibition of phosphorylation of myelin basic protein and 2',3'-cyclic nucleotide phosphohydrolase. Ceramides, which have been shown to be effectors of TNF-alpha, are ineffective in inhibiting phosphorylation, whereas sphingomyelinase mimics TNF-alpha in this action. These observations suggest that other products of sphingomyelin hydrolysis may be the mediator(s) of TNF-alpha effect on protein phosphorylation. We have thus demonstrated that TNF-alpha can perturb the functions of OLGs via modulation of ion channels and of protein phosphorylation without necessarily inducing cell death. It is conceivable that modulation of ion channels and protein phosphorylation constitutes effective mechanisms for the participation of cytokines in signal transduction during myelination, demyelination and remyelination.
我们运用了电生理学和生物化学方法相结合的手段,来研究肿瘤坏死因子-α(TNF-α)对培养的少突胶质细胞(OLGs)的作用及其作用机制。我们的研究得出了以下结论:(1)将成熟的绵羊OLGs长时间暴露于TNF-α会导致突起延伸受到抑制、膜去极化以及内向整流钾电流和外向钾电流幅度降低;(2)将OLGs短暂暴露于TNF-α不会引发膜去极化或胞质Ca2+水平的持续变化;(3)将OLGs与TNF-α孵育1小时会导致髓鞘碱性蛋白和2',3'-环核苷酸磷酸二酯酶的磷酸化受到抑制。神经酰胺已被证明是TNF-α的效应分子,但在抑制磷酸化方面无效,而鞘磷脂酶在这一作用中可模拟TNF-α。这些观察结果表明,鞘磷脂水解的其他产物可能是TNF-α对蛋白质磷酸化作用的介导物。我们由此证明,TNF-α可通过调节离子通道和蛋白质磷酸化来干扰OLGs的功能,而不一定诱导细胞死亡。可以设想,离子通道和蛋白质磷酸化的调节构成了细胞因子在髓鞘形成、脱髓鞘和再髓鞘化过程中参与信号转导的有效机制。