Suppr超能文献

Diquat-dependent protein carbonyl formation. Identification of lipid-dependent and lipid-independent pathways.

作者信息

Blakeman D P, Ryan T P, Jolly R A, Petry T W

机构信息

Upjohn Laboratories, Kalamazoo, MI 49001, USA.

出版信息

Biochem Pharmacol. 1995 Sep 28;50(7):929-35. doi: 10.1016/0006-2952(95)00214-k.

Abstract

In a previous report on diquat-dependent oxidative damage in rat hepatic microsomes, protein oxidation, as measured by protein carbonyl (PC) formation, was observed in addition to lipid peroxidation (LP). Both phenomena were antioxidant sensitive. Inhibition of PC formation was somewhat surprising given the proposed mechanism of metal-catalyzed protein oxidation. Studies reported here examined diquat-dependent PC formation in greater detail. In rat hepatic microsomes, diquat-dependent thiobarbituric acid-reactive substances (TBARS) and PC formation were time and concentration dependent. In this system, LP was inhibited completely by U-74006F or U-78517G, whereas PC formation was inhibited only partially by these antioxidants. In an essentially lipid-free system consisting of purified rat hepatic cytochrome P450 reductase, BSA and an NADPH-generating system, PC formation was also observed, but was not antioxidant-sensitive. Under these conditions, minimal diquat-dependent TBARS formation was observed. The observation of relative antioxidant insensitivity is consistent with H2O2 (generated during the diquat redox cycle) catalyzing protein oxidation via a site-specific, metal-catalyzed mechanism. Thus, different pathways would appear to be involved in diquat-dependent PC formation in lipid-containing and lipid-free systems. Carbon tetrachloride induces LP following reductive activation to the trichloromethyl free radical, a pathway not directly involving H2O2 generation. In the microsomal system, CCl4 induced TBARS and PC formation, both of which were completely inhibitable by antioxidants. Taken together, these data suggest that diquat induces PC formation by lipid-dependent (antioxidant-sensitive) and lipid-independent (antioxidant-insensitive) pathways. In microsomes, both pathways contribute to diquat-dependent PC formation. Data for the lipid-independent pathway are consistent with the mechanism of metal-catalyzed protein oxidation proposed by Stadtman and colleagues (reviewed in Free Radic Biol Med 9: 315-325, 1990), while the lipid-dependent pathway is likely secondary to LP itself--via a Michael-type addition reaction between hydroxyalkenals and protein sulfhydryl groups, amino groups or other protein nucleophiles. The latter pathway is also responsible for carbon tetrachloride-dependent PC formation. Additional studies are in progress to further characterize the lipid-independent mechanism.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验