Solomon J E, Liney D
Beckman Institute, California Institute of Technology, Pasadena 91125, USA.
Biopolymers. 1995 Nov;36(5):579-97. doi: 10.1002/bip.360360504.
We have studied the use of a new Monte Carlo (MC) chain generation algorithm, introduced by T. Garel and H. Orland [(1990) Journal of Physics A, Vol. 23, pp. L621-L626], for examining the thermodynamics of protein folding transitions and for generating candidate C(alpha) backbone structures as starting points for a de novo protein structure paradigm. This algorithm, termed the guided replication Monte Carlo method, allows a rational approach to the introduction of known "native" folded characteristics as constraints in the chain generation process . We have shown this algorithm to be computationally very efficient in generating large ensembles of candidate C(alpha) chains on the face centered cubic lattice, and illustrate its use by calculating a number of thermodynamic quantities related to protein folding characteristics. In particular, we have used this static MC algorithm to compare such temperature-dependent quantities as the ensemble mean energy, ensemble mean free energy, the heat capacity, and the mean-square radius of gyration. We also demonstrate the use of several simple "guide fields" for introducing protein-specific constraints into the ensemble generation process. Several extensions to our current model are suggested, and applications of the method to other folding related problems are discussed.
我们研究了一种由T. 加雷尔和H. 奥兰多[(1990年)《物理学杂志A》,第23卷,第L621 - L626页]引入的新的蒙特卡罗(MC)链生成算法,用于研究蛋白质折叠转变的热力学,并生成候选的Cα主链结构,作为从头开始的蛋白质结构范式的起点。这种算法被称为引导复制蒙特卡罗方法,它允许以一种合理的方式将已知的“天然”折叠特征作为约束引入链生成过程。我们已经证明,这种算法在面心立方晶格上生成大量候选Cα链的集合时计算效率非常高,并通过计算一些与蛋白质折叠特征相关的热力学量来说明其用途。特别是,我们使用这种静态MC算法比较了诸如系综平均能量、系综平均自由能、热容和均方回转半径等与温度相关的量。我们还展示了使用几个简单的“引导场”将蛋白质特异性约束引入系综生成过程。我们提出了对当前模型的几个扩展,并讨论了该方法在其他折叠相关问题上的应用。