Beutler T C, Dill K A
Department of Pharmaceutical Chemistry, University of California, San Francisco 94143-1204, USA.
Protein Sci. 1996 Oct;5(10):2037-43. doi: 10.1002/pro.5560051010.
We describe a new computer algorithm for finding low-energy conformations of proteins. It is a chain-growth method that uses a heuristic bias function to help assemble a hydrophobic core. We call it the Core-directed chain Growth method (CG). We test the CG method on several well-known literature examples of HP lattice model proteins [in which proteins are modeled as sequences of hydrophobic (H) and polar (P) monomers], ranging from 20-64 monomers in two dimensions, and up to 88-mers in three dimensions. Previous nonexhaustive methods--Monte Carlo, a Genetic Algorithm, Hydrophobic Zippers, and Contact Interactions--have been tried on these same model sequences. CG is substantially better at finding the global optima, and avoiding local optima, and it does so in comparable or shorter times. CG finds the global minimum energy of the longest HP lattice model chain for which the global optimum is known, a 3D 88-mer that has only been reachable before by the CHCC complete search method. CG has the potential advantage that it should have nonexponential scaling with chain length. We believe this is a promising method for conformational searching in protein folding algorithms.
我们描述了一种用于寻找蛋白质低能量构象的新计算机算法。它是一种链增长方法,使用启发式偏差函数来帮助组装疏水核心。我们将其称为核心导向链增长方法(CG)。我们在几个二维20至64个单体、三维高达88聚体的HP晶格模型蛋白质(其中蛋白质被建模为疏水(H)和极性(P)单体序列)的著名文献示例上测试了CG方法。之前的非穷举方法——蒙特卡罗方法、遗传算法、疏水拉链法和接触相互作用法——已在这些相同的模型序列上试过。CG在寻找全局最优解和避免局部最优解方面表现得明显更好,而且能在相当或更短的时间内做到这一点。CG找到了已知全局最优解的最长HP晶格模型链的全局最小能量,即一个三维88聚体,此前只有通过CHCC完全搜索方法才能达到。CG具有潜在优势,即它对链长度的缩放不应呈指数形式。我们认为这是一种在蛋白质折叠算法中进行构象搜索的有前途的方法。