Suppr超能文献

基于随机上下文无关文法的RNA二级结构自动测定

Automatic RNA secondary structure determination with stochastic context-free grammars.

作者信息

Grate L

机构信息

Department of Computer Engineering, University of California, Santa Cruz 95064, USA.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1995;3:136-44.

PMID:7584430
Abstract

We have developed a method for predicting the common secondary structure of large RNA multiple alignments using only the information in the alignment. It uses a series of progressively more sensitive searches of the data in an iterative manner to discover regions of base pairing; the first pass examines the entire multiple alignment. The searching uses two methods to find base pairings. Mutual information is used to measure covariation between pairs of columns in the multiple alignment and a minimum length encoding method is used to detect column pairs with high potential to base pair. Dynamic programming is used to recover the optimal tree made up of the best potential base pairs and to create a stochastic context-free grammar. The information in the tree guides the next iteration of searching. The method is similar to the traditional comparative sequence analysis technique. The method correctly identifies most of the common secondary structure in 16S and 23S rRNA.

摘要

我们开发了一种仅使用比对信息来预测大型RNA多序列比对常见二级结构的方法。它以迭代方式对数据进行一系列逐渐更敏感的搜索,以发现碱基配对区域;首轮搜索会检查整个多序列比对。搜索使用两种方法来寻找碱基配对。互信息用于测量多序列比对中各列对之间的共变情况,一种最小长度编码方法用于检测具有高碱基配对潜力的列对。动态规划用于恢复由最佳潜在碱基对组成的最优树,并创建一个随机上下文无关文法。树中的信息指导下一轮搜索。该方法类似于传统的比较序列分析技术。该方法能正确识别16S和23S rRNA中的大部分常见二级结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验