Suppr超能文献

使用混合隐马尔可夫模型/神经网络架构进行蛋白质建模。

Protein modeling with hybrid Hidden Markov Model/neural network architectures.

作者信息

Baldi P, Chauvin Y

机构信息

Division of Biology and JPL California Institute of Technology, Pasadena 91125, USA.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1995;3:39-47.

PMID:7584463
Abstract

Hidden Markov Models (HMMs) are useful in a number of tasks in computational molecular biology, and in particular to model and align protein families. We argue that HMMs are somewhat optimal within a certain modeling hierarchy. Single first order HMMs, however, have two potential limitations: a large number of unstructured parameters, and a built-in inability to deal with long-range dependencies. Hybrid HMM/Neural Network (NN) architectures attempt to overcome these limitations. In hybrid HMM/NN, the HMM parameters are computed by a NN. This provides a reparametrization that allows for flexible control of model complexity, and incorporation of constraints. The approach is tested on the immunoglobulin family. A hybrid model is trained, and a multiple alignment derived, with less than a fourth of the number of parameters used with previous single HMMs. To capture dependencies, however, one must resort to a larger hybrid model class, where the data is modeled by multiple HMMs. The parameters of the HMMs, and their modulation as a function of input or context, is again calculated by a NN.

摘要

隐马尔可夫模型(HMM)在计算分子生物学的许多任务中都很有用,尤其适用于对蛋白质家族进行建模和比对。我们认为,在特定的建模层次结构中,HMM在某种程度上是最优的。然而,单一的一阶HMM有两个潜在的局限性:大量无结构的参数,以及内在的处理长程依赖关系的能力不足。混合HMM/神经网络(NN)架构试图克服这些局限性。在混合HMM/NN中,HMM参数由NN计算得出。这提供了一种重新参数化方式,允许灵活控制模型复杂度并纳入约束条件。该方法在免疫球蛋白家族上进行了测试。训练了一个混合模型,并得出了一个多重比对结果,所使用的参数数量不到先前单一HMM的四分之一。然而,为了捕捉依赖关系,必须采用更大的混合模型类别,其中数据由多个HMM建模。HMM的参数及其作为输入或上下文函数的调制再次由NN计算得出。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验