Suppr超能文献

使用狄利克雷混合先验来推导蛋白质家族的隐马尔可夫模型。

Using Dirichlet mixture priors to derive hidden Markov models for protein families.

作者信息

Brown M, Hughey R, Krogh A, Mian I S, Sjölander K, Haussler D

机构信息

University of California, Santa Cruz 95064, USA.

出版信息

Proc Int Conf Intell Syst Mol Biol. 1993;1:47-55.

PMID:7584370
Abstract

A Bayesian method for estimating the amino acid distributions in the states of a hidden Markov model (HMM) for a protein family or the columns of a multiple alignment of that family is introduced. This method uses Dirichlet mixture densities as priors over amino acid distributions. These mixture densities are determined from examination of previously constructed HMMs or multiple alignments. It is shown that this Bayesian method can improve the quality of HMMs produced from small training sets. Specific experiments on the EF-hand motif are reported, for which these priors are shown to produce HMMs with higher likelihood on unseen data, and fewer false positives and false negatives in a database search task.

摘要

介绍了一种贝叶斯方法,用于估计蛋白质家族的隐马尔可夫模型(HMM)状态或该家族多序列比对列中的氨基酸分布。该方法使用狄利克雷混合密度作为氨基酸分布的先验。这些混合密度是通过检查先前构建的HMM或多序列比对来确定的。结果表明,这种贝叶斯方法可以提高从小训练集产生的HMM的质量。报告了对EF-手基序的具体实验,结果表明这些先验在未见数据上产生具有更高似然性的HMM,并且在数据库搜索任务中具有更少的假阳性和假阴性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验