Suppr超能文献

Intracellular calcium transients underlying interval-force relationship in whole rat hearts: effects of calcium antagonists.

作者信息

Zaugg C E, Kojima S, Wu S T, Wikman-Coffelt J, Parmley W W, Buser P T

机构信息

Department of Medicine, University of California San Francisco 94143, USA.

出版信息

Cardiovasc Res. 1995 Aug;30(2):212-21.

PMID:7585808
Abstract

OBJECTIVES

Much of the understanding about the cardiac interval-force relationship of the whole heart, including mechanical restitution and postextrasystolic potentiation (PESP), has been inferred from isolated muscle studies. We tested whether results from isolated muscles about intracellular Ca2+([Ca2+]i) transients underlying the interval-force relationship can be substantiated in whole hearts. Additionally, we investigated whether Ca2+ antagonists could alter [Ca2+]i transients underlying mechanical restitution and postextrasystolic potentiation.

METHODS

[Ca2+]i transients were studied in isolated perfused rat hearts by surface fluorometry and Indo-1. Using computer-controlled pacing protocols, we performed restitution curves for left ventricular developed pressure and [Ca2+]i (developed pressure and [Ca2+]i plotted as a function of extrasystolic intervals). To quantify restitution curves, we fitted monoexponential functions to plots and analyzed their shift and slope. Then, we used Ca2+ antagonists, low extracellular Ca2+([Ca2+]o) and PESP to modify restitution curves. [Ca2+]i transients in isolated rat hearts were interpreted as Ca2+ released from the sarcoplasmic reticulum.

RESULTS

Interval-dependent changes in developed pressure were strongly correlated to interval-dependent changes in the amplitude of [Ca2+]i transients in isolated whole rat hearts. Additionally, nifedipine and low [Ca2+]o led to similar downward shifts but not to a changed slope of restitution curves for [Ca2+]i. On the other hand, PESP increased the slope of restitution curves for [Ca2+]i. Furthermore, the effect of PESP on developed pressure was blunted by high concentrations of Ca2+ antagonists.

CONCLUSIONS

The results from isolated muscles about [Ca2+]i transients underlying the interval-force relationship could be substantiated in whole hearts. Additionally, low [Ca2+]i (induced by nifedipine or low [Ca2+]o) decreased the maximal Ca2+ release of the sarcoplasmic reticulum but did not change the release kinetics. On the other hand, PESP presumably accelerated Ca2+ release kinetics of the sarcoplasmic reticulum.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验