Suppr超能文献

A pharmacokinetic model of inhaled methanol in humans and comparison to methanol disposition in mice and rats.

作者信息

Perkins R A, Ward K W, Pollack G M

机构信息

School of Medicine, University of North Carolina at Chapel Hill 27599, USA.

出版信息

Environ Health Perspect. 1995 Jul-Aug;103(7-8):726-33. doi: 10.1289/ehp.95103726.

Abstract

We estimated kinetic parameters associated with methanol disposition in humans from data reported in the literature. Michaelis-Menten elimination parameters (Vmax = 115 mg/L/hr; Km = 460 mg/L) were selected for input into a semi-physiologic pharmacokinetic model. We used reported literature values for blood or urine methanol concentrations in humans and nonhuman primates after methanol inhalation as input to an inhalation disposition model that evaluated the absorption of methanol, expressed as the fraction of inhaled methanol concentration that was absorbed (phi). Values of phi for nonexercising subjects typically varied between 0.64 and 0.75; 0.80 was observed to be a reasonable upper boundary for fractional absorption. Absorption efficiency in exercising subjects was lower than that in resting individuals. Incorporation of the kinetic parameters and phi into a pharmacokinetic model of human exposure to methanol, compared to a similar analysis in rodents, indicated that following an 8-hr exposure to 5000 ppm of methanol vapor, blood methanol concentrations in the mouse would be 13- to 18-fold higher than in humans exposed to the same methanol vapor concentration; blood methanol concentrations in the rat under similar conditions would be 5-fold higher than in humans. These results demonstrate the importance in the risk assessment for methanol of basing extrapolations from rodents to humans on actual blood concentrations rather than on methanol vapor exposure concentrations.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/504d/1522197/a94b719d308a/envhper00356-0097-a.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验