Suppr超能文献

利用行政数据识别并发症和医疗服务提供者对规范做法的低依从性。

Identifying complications and low provider adherence to normative practices using administrative data.

作者信息

Kuykendall D H, Ashton C M, Johnson M L, Geraci J M

机构信息

VAMC, Houston, TX 77030, USA.

出版信息

Health Serv Res. 1995 Oct;30(4):531-54.

Abstract

OBJECTIVE

This study investigated whether unexpected length of stay (LOS) could be used as an indicator to identify hospital patients who experienced complications or whose care exhibited low adherence to normative practices.

DATA SOURCES AND STUDY SETTING

We analyzed 1,477 cases admitted for one of three medical conditions. All cases were discharged from one of nine participating Department of Veterans Affairs (VA) hospitals from October 1987 through September 1989. Analyses used administrative data and information abstracted through chart reviews that included severity of illness indicators, complications, and explicit process of care criteria reflecting adherence to normative practices.

STUDY DESIGN

We developed separate multiple linear regression models for each disease using LOS as the dependent measure and variables that could be assumed present at the time of admission as explanatory variables. Unexpectedly long LOS (i.e., discharges with high residuals) was used to target complications and unexpectedly short LOS was used to target cases whose care might have exhibited low adherence to normative practices. Information gleaned from chart reviews served as the gold standard for determining actual complications and low adherence.

PRINCIPAL FINDINGS

Analyses of administrative data showed that unexpectedly long LOS identified complications with sensitivities ranging from 40 through 62 percent across the three conditions. Positive predictive values all were at greater than chance levels (p < .05). This represented substantial improvement over identification of complications using ICD-9-CM codes contained in the administrative database where sensitivities were from 26 through 39 percent. Unexpectedly short LOS identified low provider adherence with sensitivities ranging from 33 through 45 percent with positive predictive values all above chance levels (p < .05). The addition to the LOS models of chart-based severity of illness information helped explain LOS, but failed to facilitate identification of complications or low adherence beyond what was accomplished using administrative data.

CONCLUSIONS

Administrative data can be used to target cases when seeking to identify complications or low provider adherence to normative practices. Targeting can be accomplished through the creation of indirect measures based on unexpected LOS. Future efforts should be devoted to validating unexpected LOS as a hospital-level quality indicator.

RELEVANCE/IMPACT: Scrutiny of unexpected LOS holds promise for enhancing the usefulness of administrative data as a resource for quality initiatives.

摘要

目的

本研究调查了意外住院时长(LOS)是否可作为一种指标,用以识别经历并发症或其护理对规范做法依从性较低的住院患者。

数据来源与研究背景

我们分析了因三种医疗状况之一入院的1477例病例。所有病例均于1987年10月至1989年9月期间从九家参与研究的退伍军人事务部(VA)医院之一出院。分析使用了行政数据以及通过病历审查提取的信息,其中包括疾病严重程度指标、并发症以及反映对规范做法依从性的明确护理流程标准。

研究设计

我们针对每种疾病分别建立了多个线性回归模型,将住院时长作为因变量,将入院时可能存在的变量作为解释变量。意外的长时间住院时长(即残差较高的出院情况)用于确定并发症,意外的短时间住院时长用于确定护理可能对规范做法依从性较低的病例。从病历审查中收集的信息作为确定实际并发症和低依从性的金标准。

主要发现

行政数据分析表明,意外的长时间住院时长识别并发症的敏感度在三种状况下为40%至62%。阳性预测值均高于随机水平(p < 0.05)。这相较于使用行政数据库中包含的ICD - 9 - CM编码识别并发症有了显著改善,后者的敏感度为26%至39%。意外的短时间住院时长识别医护人员低依从性的敏感度为33%至45%,阳性预测值均高于随机水平(p < 0.05)。在住院时长模型中加入基于病历的疾病严重程度信息有助于解释住院时长,但未能促进对并发症或低依从性的识别,超出了使用行政数据所能达到的程度。

结论

在试图识别并发症或医护人员对规范做法的低依从性时,行政数据可用于确定病例。可以通过基于意外住院时长创建间接指标来实现这一目标。未来的工作应致力于验证意外住院时长作为医院层面质量指标的有效性。

相关性/影响:对意外住院时长的审查有望提高行政数据作为质量改进资源的有用性。

相似文献

7
Influence of hospital length of stay for heart failure on quality of care.心力衰竭患者住院时长对医疗质量的影响。
Am J Cardiol. 2008 Dec 15;102(12):1693-7. doi: 10.1016/j.amjcard.2008.08.015. Epub 2008 Oct 1.

本文引用的文献

8
The association between the quality of inpatient care and early readmission.住院护理质量与早期再入院之间的关联。
Ann Intern Med. 1995 Mar 15;122(6):415-21. doi: 10.7326/0003-4819-122-6-199503150-00003.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验