Suppr超能文献

Co-crystallization of an ETS domain (PU.1) in complex with DNA. Engineering the length of both protein and oligonucleotide.

作者信息

Pio F, Ni C Z, Mitchell R S, Knight J, McKercher S, Klemsz M, Lombardo A, Maki R A, Ely K R

机构信息

Cancer Research Center, La Jolla Cancer Research Foundation, California 92037, USA.

出版信息

J Biol Chem. 1995 Oct 13;270(41):24258-63. doi: 10.1074/jbc.270.41.24258.

Abstract

The PU.1 transcription factor is a member of the ets gene family of regulatory proteins. These molecules play a role in normal development and also have been implicated in malignant processes such as the development of erythroid leukemia. The Ets proteins share a conserved DNA-binding domain (the ETS domain) that recognizes a purine-rich sequence with the core sequence: 5'-C/AGGAA/T-3'. This domain binds to DNA as a monomer, unlike many other DNA-binding proteins. The ETS domain of the PU.1 transcription factor has been crystallized in complex with a 16-base pair oligonucleotide that contains the recognition sequence. The crystals formed in the space group C2 with a = 89.1, b = 101.9, c = 55.6 A, and beta = 111.2 degrees and diffract to at least 2.3 A. There are two complexes in the asymmetric unit. Production of large usable crystals was dependent on the length of both protein and DNA components, the use of oligonucleotides with unpaired A and T bases at the termini, and the presence of polyethylene glycol and zinc acetate in the crystallization solutions. This is the first ETS domain to be crystallized, and the strategy used to crystallize this complex may be useful for other members of the ets family.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验