Regnouf F, Sagot I, Delouche B, Devilliers G, Cartaud J, Henry J P, Pradel L A
Centre National de la Recherche Scientifique, Institut de Biologie Physico-Chimique, Paris, France.
J Biol Chem. 1995 Nov 10;270(45):27143-50. doi: 10.1074/jbc.270.45.27143.
Heterotetrameric annexin 2 phosphorylated "in vitro" by rat brain protein kinase C is purified and obtained devoid of unphosphorylated protein; it contains 2 mol of phosphate/mol of heterotetramer. The aggregative and binding properties of the phosphorylated annexin 2 toward purified chromaffin granules are compared with those of the unphosphorylated annexin 2. Annexin 2 binds to chromaffin granules with high affinity. Phosphorylation of annexin 2 decreases the affinity of this binding without affecting the maximum binding capacity. The binding curves are strongly cooperative. It is suggested that a surface oligomerization of the proteins may take place upon binding. Besides, phosphorylation of annexin 2 is followed by a dissociation of the light chains from the heavy chains in the heterotetramer. Whereas annexin 2 induces the aggregation of chromaffin granules at microM calcium concentration, the phosphorylated annexin 2 does not induce aggregation at any concentration of calcium either at pH 6 or 7. The phosphorylation of annexin 2 by protein kinase C, MgATP, and 12-O-tetradecanoylphorbol-13-acetate on chromaffin granules induces a fusion of chromaffin granules membranes observed in electron microscopy. The fusion requires the activation of protein kinase C by 12-O-tetradecanoylphorbol-13-acetate. Given these results and since annexin 2 is phosphorylated by protein kinase C under stimulation of chromaffin cells, it is suggested that phosphorylated annexin 2 may be implicated in the fusion step during exocytosis of chromaffin granules.