Stimmel J B, Stockstill M E, Kull F C
Division of Cell Biology, Wellcome Research Laboratories, Research Triangle Park, North Carolina 27709, USA.
Bioconjug Chem. 1995 Mar-Apr;6(2):219-25. doi: 10.1021/bc00032a010.
Realization of the potential of yttrium-90 for the radioimmunotherapy of cancer depends on rapid and kinetically stable chelation. Conditions were evaluated that influenced the chelation efficiency of these select chelators for yttrium-90: the macrocyclic chelators 2-(rho-nitrobenzyl)-1,4,7,10-tetraazacyclododecane-N,N',N",N"'-tet raacetic acid (nitro-DOTA); alpha-(2-(rho-nitrophenyl)ethyl)-1,4,7,10,- tetraazacyclododecane-1-acetic-4,7,10-tris(methylacetic) acid (nitro-PADOTA); 2-(rho-nitrobenzyl)-1,4,7,10-tetraazacyclotridecane- N,N',N",N"'-tetraacetic acid (nitro-TRITA); the acyclic chelator diethylenetriaminepentaacetic acid (DTPA); its analogues N-[2-amino-3-(rho-nitrophenyl)propyl]-trans- cyclohexane-1,2-diamine-N,N',N"-pentaacetic acid (nitro-CHX-A-DTPA) and 2-methyl-6-(rho-nitrobenzyl)-1,4,7- triazaheptane-N,N,N',N",N"-pentaacetic acid (nitro-1B4M-DTPA or nitro-MX-DTPA); and a novel acyclic terpyridine chelator, 6,6"-bis[[N,N,N",N"- tetra(carboxymethyl)amino]methyl]-4'-(3-amino-4-methoxyphenyl)-2,2':6',2 "- terpyridine (TMT-amine). The chelators fell into two distinct classes. The acyclic chelators, DTPA, nitro-CHX-A-DTPA, nitro-MX-DTPA, and TMT-amine, chelated instantaneously in a concentration-independent manner. Chelation efficiency was affected minimally when the concentrations of trace metal contaminants were increased. In contrast, the macrocyclic chelators, nitro-DOTA, nitro-TRITA, and nitro-PADOTA, chelated yttrium-90 more slowly in a concentration-dependent manner where efficiency was maximal only when the chelator:metal ratio was greater than 3. Their chelation efficiency diminished in a concentration-dependent fashion as the concentrations of trace metal contaminants were increased. Optimum labeling efficiencies were obtained through application of these principles.(ABSTRACT TRUNCATED AT 250 WORDS)
实现钇-90在癌症放射免疫治疗中的潜力取决于快速且动力学稳定的螯合作用。对影响这些特定螯合剂与钇-90螯合效率的条件进行了评估:大环螯合剂2-(对硝基苄基)-1,4,7,10-四氮杂环十二烷-N,N',N",N"'-四乙酸(硝基-DOTA);α-(2-(对硝基苯基)乙基)-1,4,7,10,-四氮杂环十二烷-1-乙酸-4,7,10-三(甲基乙酸)(硝基-PADOTA);2-(对硝基苄基)-1,4,7,10-四氮杂环十三烷-N,N',N",N"'-四乙酸(硝基-TRITA);非环螯合剂二乙烯三胺五乙酸(DTPA);其类似物N-[2-氨基-3-(对硝基苯基)丙基]-反式环己烷-1,2-二胺-N,N',N"-五乙酸(硝基-CHX-A-DTPA)和2-甲基-6-(对硝基苄基)-1,4,7-三氮杂庚烷-N,N,N',N",N"-五乙酸(硝基-1B4M-DTPA或硝基-MX-DTPA);以及一种新型非环三联吡啶螯合剂6,6"-双[[N,N,N",N"-四(羧甲基)氨基]甲基]-4'-(3-氨基-4-甲氧基苯基)-2,2':6',2 "-三联吡啶(TMT-胺)。这些螯合剂分为两类。非环螯合剂DTPA、硝基-CHX-A-DTPA、硝基-MX-DTPA和TMT-胺以与浓度无关的方式瞬间螯合。当痕量金属污染物浓度增加时,螯合效率受到的影响最小。相比之下,大环螯合剂硝基-DOTA、硝基-TRITA和硝基-PADOTA与钇-90的螯合速度较慢,呈浓度依赖性,仅当螯合剂与金属的比例大于3时效率最高。随着痕量金属污染物浓度的增加,它们的螯合效率以浓度依赖性方式降低。通过应用这些原理获得了最佳标记效率。(摘要截短于250字)