Suppr超能文献

Modulation of human sympathetic periodicity by mild, brief hypoxia and hypercapnia.

作者信息

Trzebski A, Smith M L, Beightol L A, Fritsch-Yelle J M, Rea R F, Eckberg D L

机构信息

Department of Physiology, Institute of Physiological Sciences, Medical Academy, Warsaw, Poland.

出版信息

J Physiol Pharmacol. 1995 Mar;46(1):17-35.

PMID:7599334
Abstract

We determined the influence of brief mild normocapnic hyperoxia, hypoxia, and hyperoxic hypercapnia on human muscle sympathetic nerve activity and R-R intervals, as quantified by both time- and frequency-domain analyses. We obtained measurements in nine healthy young adult men and women during uncontrolled and frequency (but not tidal volume) controlled breathing. Responses were evaluated with forward selection and backward elimination statistical models, with muscle sympathetic nerve activity as the dependent variable, and power spectral techniques. Hyperoxia and hypoxia did not alter arterial pressure; hypercapnia increased diastolic pressure modestly. Average R-R intervals tended to increase during hyperoxia, and decrease during hypoxia and hypercapnia. During uncontrolled breathing, changes of inspiratory gases exerted only minor effects on muscle sympathetic nerve activity; during controlled breathing, both hypoxia and hypercapnia tended to increase muscle sympathetic nerve activity. Statistical modeling suggested that chemoreceptor stimulation increased muscle sympathetic neural outflows, but that increases of sympathetic traffic were opposed by secondary increases of ventilation. Inspiratory gases modulated the frequency distribution of muscle sympathetic nerve activity strikingly: hypoxia increased sympathetic power at respiratory frequencies and hypercapnia increased sympathetic power at both respiratory and (primarily in one subject) cardiac frequencies. Our data suggest that mild brief hypoxia and hypercapnia increase human muscle sympathetic nerve activity, but that this tendency is opposed by chemoreflex-induced increases of ventilation. Our results suggest also that chemoreceptor activity exerts important influences on the frequency content, as well as the quantity of sympathetic neural outflow.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验