Suppr超能文献

Analysis of randomly amplified flow-sorted chromosomes using the polymerase chain reaction.

作者信息

Hui S M, Trask B, van den Engh G, Bartuski A J, Smith A, Flint A, Lalande M, Silverman G A

机构信息

Joint Program in Neonatology, Harvard Medical School, Boston, Massachusetts 02115, USA.

出版信息

Genomics. 1995 Mar 20;26(2):364-71. doi: 10.1016/0888-7543(95)80221-7.

Abstract

Bivariate fluorescence-activated sorting is a method for obtaining relatively pure fractions of chromosomal DNA. Unfortunately, the yields (< 0.25 microgram/day) frequently limit the types of molecular analysis that can be performed. The polymerase chain reaction (PCR) is capable of amplifying unique sequences from scant amounts of template DNA. The purpose of this study was to determine whether the sensitivity of the PCR could be used to detect sequences specific to chromosomes discriminated and purified by flow cytometry. Flow-sorted chromosomal DNA was prepared by collecting approximately 10(5) chromosomes onto a nitrocellulose filter and eluting the DNA by boiling. Amplification products were not detected when different amounts of chromosomal DNA were used in a single 30 to 40-cycle PCR assay. However, when the eluted DNA was primed with degenerate 15-bp oligonucleotides and randomly amplified prior to performing the PCR assay, sequence-tagged sites (STSs) were detected after gel electrophoresis and ethidium bromide staining. This random amplification step eliminated the need for both reamplification with nested primers and detection by DNA hybridization. Furthermore, the random amplification scheme provided enough template DNA from a single sort (10(5) chromosomes) to perform > 1000 PCR assays. Representational analysis of one chromosome type revealed that > 74% of 70 STSs were detected. Moreover, the technology could be used to identify and delineate the breakpoint region of a marker chromosome. This amplification scheme should simplify greatly the molecular analysis of normal and aberrant chromosomes.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验