Centre of the Region Haná for Biotechnological and Agricultural Research, Institute of Experimental Botany, Sokolovská 6, Olomouc, Czech Republic.
Funct Integr Genomics. 2012 Aug;12(3):397-416. doi: 10.1007/s10142-012-0293-0. Epub 2012 Aug 16.
Nuclear genomes of human, animals, and plants are organized into subunits called chromosomes. When isolated into aqueous suspension, mitotic chromosomes can be classified using flow cytometry according to light scatter and fluorescence parameters. Chromosomes of interest can be purified by flow sorting if they can be resolved from other chromosomes in a karyotype. The analysis and sorting are carried out at rates of 10(2)-10(4) chromosomes per second, and for complex genomes such as wheat the flow sorting technology has been ground-breaking in reducing genome complexity for genome sequencing. The high sample rate provides an attractive approach for karyotype analysis (flow karyotyping) and the purification of chromosomes in large numbers. In characterizing the chromosome complement of an organism, the high number that can be studied using flow cytometry allows for a statistically accurate analysis. Chromosome sorting plays a particularly important role in the analysis of nuclear genome structure and the analysis of particular and aberrant chromosomes. Other attractive but not well-explored features include the analysis of chromosomal proteins, chromosome ultrastructure, and high-resolution mapping using FISH. Recent results demonstrate that chromosome flow sorting can be coupled seamlessly with DNA array and next-generation sequencing technologies for high-throughput analyses. The main advantages are targeting the analysis to a genome region of interest and a significant reduction in sample complexity. As flow sorters can also sort single copies of chromosomes, shotgun sequencing DNA amplified from them enables the production of haplotype-resolved genome sequences. This review explains the principles of flow cytometric chromosome analysis and sorting (flow cytogenetics), discusses the major uses of this technology in genome analysis, and outlines future directions.
人类、动物和植物的核基因组都组织成称为染色体的亚单位。在分离到水悬浮液中后,可以根据光散射和荧光参数使用流式细胞术对有丝分裂染色体进行分类。如果感兴趣的染色体可以从细胞系谱中的其他染色体中分辨出来,则可以通过流式分选进行纯化。分析和分选的速度为每秒 10(2)-10(4)个染色体,对于小麦等复杂基因组,流式分选技术在降低基因组测序的基因组复杂性方面具有开创性。高样品率为染色体组型分析(流式核型分析)和大量染色体的纯化提供了有吸引力的方法。在描述生物体的染色体组型时,使用流式细胞术可以研究大量染色体,从而进行统计上准确的分析。染色体分选在分析核基因组结构和分析特定和异常染色体方面起着特别重要的作用。其他有吸引力但尚未得到充分探索的特征包括染色体蛋白分析、染色体超微结构分析和使用 FISH 的高分辨率作图。最近的结果表明,染色体流式分选可以与 DNA 微阵列和下一代测序技术无缝结合,用于高通量分析。主要优点是将分析靶向感兴趣的基因组区域,并显著降低样品复杂性。由于流式分选器还可以分选单个染色体拷贝,因此从它们扩增的 DNA 进行 shotgun 测序可以生成单倍型解析的基因组序列。本综述解释了流式细胞术染色体分析和分选(流式细胞遗传学)的原理,讨论了该技术在基因组分析中的主要用途,并概述了未来的发展方向。