Nick T G, George V, Elston R C, Wilson A F
Department of Health Sciences, University of Mississippi Medical Center, Jackson 39216-4505, USA.
Genet Epidemiol. 1995;12(2):145-61. doi: 10.1002/gepi.1370120204.
In genetic analysis it is often of interest to analyze associations between traits of unknown genetic etiology and genetic markers from pedigree data. Statistical methods that assume independence of pedigree members cannot be used because they disregard the statistical dependencies of members in a pedigree. For quantitative traits, a regression model proposed by George and Elston [Genet Epidemiol 4:193-201, 1987] uses an asymptotic likelihood ratio test and incorporates a correlation structure that allows for statistical dependence among the pedigree members. The statistical validity of this test is assessed for finite samples by measuring the discrepancy between the empirical and theoretical chi-square distributions. The variance of the mean of the dependent variable is determined to be related to this discrepancy and can be used to determine whether a pedigree structure is large enough for making valid statistical inferences on the basis of the asymptotic test. A multi-generational pedigree of 200 or so individuals should in many cases be sufficient for valid results when using the asymptotic likelihood ratio test for the association between markers and continuous traits.
在基因分析中,利用系谱数据来分析遗传病因不明的性状与基因标记之间的关联往往很有意义。那些假定系谱成员相互独立的统计方法不能使用,因为它们忽略了系谱中成员之间的统计相关性。对于数量性状,George和Elston[《遗传流行病学》4:193 - 201, 1987]提出的回归模型使用渐近似然比检验,并纳入了一种相关结构,该结构考虑了系谱成员之间的统计相关性。通过测量经验卡方分布与理论卡方分布之间的差异,来评估该检验在有限样本情况下的统计有效性。确定因变量均值的方差与这种差异相关,并且可用于确定系谱结构是否足够大,以便基于渐近检验做出有效的统计推断。在使用渐近似然比检验来分析标记与连续性状之间的关联时,在许多情况下,一个包含约200个个体的多代系谱应该足以得出有效的结果。