Suppr超能文献

一种用于在线门静脉成像中边缘检测的启发式方法。

A heuristic approach to edge detection in on-line portal imaging.

作者信息

McGee K P, Schultheiss T E, Martin E E

机构信息

Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.

出版信息

Int J Radiat Oncol Biol Phys. 1995 Jul 15;32(4):1185-92. doi: 10.1016/0360-3016(94)00410-m.

Abstract

PURPOSE

Portal field edge detection is an essential component of several postprocessing techniques used in on-line portal imaging, including field shape verification, selective contrast enhancement, and treatment setup error detection. Currently edge detection of successive fractions in a multifraction portal image series involves the repetitive application of the same algorithm. As the number of changes in the field is small compared to the total number of fractions, standard edge detection algorithms essentially recalculate the same field shape numerous times. A heuristic approach to portal edge detection has been developed that takes advantage of the relatively few changes in the portal field shape throughout a fractionation series.

METHODS AND MATERIALS

The routine applies a standard edge detection routine to calculate an initial field edge and saves the edge information. Subsequent fractions are processed by applying an edge detection operator over a small region about each point of the previously defined contour, to determine any shifts in the field shape in the new image. Failure of this edge check indicates that a significant change in the field edge has occurred, and the original edge detection routine is applied to the image. Otherwise the modified edge contour is used to define the new edge.

RESULTS

Two hundred and eighty-one portal images collected from an electronic portal imaging device were processed by the edge detection routine. The algorithm accurately calculated each portal field edge, as well as reducing processing time in subsequent fractions of an individual portal field by a factor of up to 14.

CONCLUSIONS

The heuristic edge detection routine is an accurate and fast method for calculating portal field edges and determining field edge setup errors.

摘要

目的

射野边缘检测是在线射野成像中使用的几种后处理技术的重要组成部分,包括射野形状验证、选择性对比度增强和治疗摆位误差检测。目前,多分次射野图像序列中连续分次的边缘检测涉及相同算法的重复应用。由于射野变化的次数与总分次数相比很少,标准边缘检测算法实际上多次重新计算相同的射野形状。已开发出一种启发式射野边缘检测方法,该方法利用了整个分次治疗系列中射野形状相对较少的变化。

方法与材料

该程序应用标准边缘检测程序来计算初始射野边缘并保存边缘信息。后续分次通过在先前定义轮廓的每个点周围的小区域上应用边缘检测算子来处理,以确定新图像中射野形状的任何偏移。此边缘检查失败表明射野边缘发生了显著变化,然后将原始边缘检测程序应用于该图像。否则,修改后的边缘轮廓用于定义新的边缘。

结果

从电子射野成像设备收集的281幅射野图像由边缘检测程序进行处理。该算法准确计算了每个射野边缘,并且将单个射野后续分次的处理时间减少了多达14倍。

结论

启发式边缘检测程序是一种准确且快速的方法,用于计算射野边缘并确定射野边缘摆位误差。

相似文献

1
A heuristic approach to edge detection in on-line portal imaging.一种用于在线门静脉成像中边缘检测的启发式方法。
Int J Radiat Oncol Biol Phys. 1995 Jul 15;32(4):1185-92. doi: 10.1016/0360-3016(94)00410-m.
7
A method for the measurement of field placement errors in digital portal images.
Phys Med Biol. 1990 Mar;35(3):299-323. doi: 10.1088/0031-9155/35/3/001.
8
Prospective clinical evaluation of an electronic portal imaging device.电子射野影像装置的前瞻性临床评估
Int J Radiat Oncol Biol Phys. 1996 Mar 1;34(4):943-51. doi: 10.1016/0360-3016(95)02189-2.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验