Suppr超能文献

Calcium-dependent intestinal chloride secretion by Vibrio parahaemolyticus thermostable direct hemolysin in a rabbit model.

作者信息

Raimondi F, Kao J P, Kaper J B, Guandalini S, Fasano A

机构信息

Division of Pediatric Gastroenterology and Nutrition, University of Maryland School of Medicine, Baltimore, USA.

出版信息

Gastroenterology. 1995 Aug;109(2):381-6. doi: 10.1016/0016-5085(95)90324-0.

Abstract

BACKGROUND & AIMS: Vibrio parahaemolyticus is a major agent of seafood gastroenteritis that induces intestinal secretion in the rabbit through its thermostable direct hemolysin. The aim of this study was to characterize the enterotoxicity of purified hemolysin in vitro.

METHODS

Rabbit ileum was mounted in Ussing chambers, and changes in potential difference and short-circuit current were monitored after addition of hemolysin. Intracellular calcium concentrations in the nontumoral rat crypt-derived cell line IEC-6 were measured using microspectrofluorometry.

RESULTS

In Ussing chamber experiments, mucosal toxin addition up to 50 hemolytic units per milliliter induced a proportional increase of the electrical parameters in normal but not Cl(-)-free Ringer's solution. The response to the toxin was not additive to that of calcium ionophore A23187 and was eliminated by preloading the tissue with 1-2-bis(o-aminophenoxy)ethane N,N,N',N'-tetraacetic acid (BAPTA), a calcium buffer. In IEC-6 cells, a 10-fold increase in intracellular calcium level was found after addition of hemolysin. Such an increase was totally quenched by BAPTA. Finally, preincubation with trisialoganglioside GT1b, but not monosialoganglioside GM1, eliminated toxin-induced increases in potential difference and short-circuit current.

CONCLUSIONS

These data support the hypothesis that the thermostable direct hemolysin induces intestinal chloride secretion using GT1b as a putative receptor and Ca2+ as a second messenger.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验