Suppr超能文献

Greater oxidative susceptibility of the surface monolayer in small dense LDL may contribute to differences in copper-induced oxidation among LDL density subfractions.

作者信息

Tribble D L, Krauss R M, Lansberg M G, Thiel P M, van den Berg J J

机构信息

Department of Molecular and Nuclear Medicine, Life Science Division, Oakland, CA 94609, USA.

出版信息

J Lipid Res. 1995 Apr;36(4):662-71.

PMID:7616114
Abstract

We monitored peroxidative stress in the surface monolayer as compared with the outer core of large, buoyant (d 1.025-1.032 g/ml) and small, dense (d 1.040-1.054 g/ml) low density lipoprotein (LDL) subfractions using the oxidation-labile fluorescent probes parinaric acid (PnA) and parinaric acid methyl ester (PnME), which partition preferentially into these respective regions of LDL. Oxidation was initiated either with CuSO4 (5 microM) or the iron (Fe3+)-containing lipophilic complex hemin (1.0 microM) plus cumene hydroperoxide to facilitate heme degradation. In the presence of Cu2+, PnA was depleted significantly more rapidly than PnME in dense (P = 0.039) but not in buoyant LDL, suggesting that surface vulnerability is enhanced in dense LDL particles. With hemin, PnA and PnME were similarly susceptible within both subfractions, although there was a trend toward slower loss of PnA in buoyant LDL (P = 0.10), consistent with the internal site of initiation and a greater surface resistance in buoyant particles. As indicated by conjugated diene lag times, dense LDL was more susceptible than buoyant LDL to oxidation by Cu2+ (P = 0.03) but not hemin (P = 0.68). These results suggest that the increased susceptibility of dense LDL to oxidation by external agents such as Cu2+ is at least partially mediated by an enhanced vulnerability of the surface compartment.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验