Suppr超能文献

用于非线性药物输注系统的基于多速率模型的控制器设计中的问题。

Issues in the design of a multirate model-based controller for a nonlinear drug infusion system.

作者信息

Gopinath R, Bequette B W, Roy R J, Kaufman H, Yu C

机构信息

Howard P. Isermann Department of Chemical Engineering, Rensselaer Polytechnic Institute, Troy, New York 12180-3590, USA.

出版信息

Biotechnol Prog. 1995 May-Jun;11(3):318-32. doi: 10.1021/bp00033a013.

Abstract

Multivariable controller design for the regulation of mean arterial pressure (MAP) and cardiac output (CO) in congestive heart failure patients is restricted by the limited frequency of CO sampling. Performance criteria for the controller specify maximum allowable transient settling times for both variables, and the design should account for the inherent multirate nature of the process in order to satisfy these criteria. We present a multirate model predictive control (MPC) design for MAP and CO regulation by combined infusion of sodium nitroprusside and dopamine, based on a comprehensive nonlinear model of the system. The multirate MPC algorithm is based on nonlinear quadratic dynamic matrix control. To reduce computation time, we introduce a selective linearization technique that linearizes the model on the basis of trends in the plant-model mismatch. The problem is complicated by restrictions on initial dopamine infusion, prescribed to avoid extremely slow responses. We present a novel rule-based override (RBO) to the MPC controller that uses a set of heuristics to initialize dopamine. The performance of the MPC/RBO controller is illustrated using simulation results.

摘要

充血性心力衰竭患者平均动脉压(MAP)和心输出量(CO)调节的多变量控制器设计受到CO采样频率有限的限制。控制器的性能标准规定了两个变量的最大允许瞬态调节时间,并且设计应考虑到该过程固有的多速率特性,以便满足这些标准。基于系统的综合非线性模型,我们提出了一种通过联合输注硝普钠和多巴胺来调节MAP和CO的多速率模型预测控制(MPC)设计。多速率MPC算法基于非线性二次动态矩阵控制。为了减少计算时间,我们引入了一种选择性线性化技术,该技术根据对象-模型失配的趋势对模型进行线性化。由于对初始多巴胺输注的限制,该问题变得复杂,这种限制是为了避免极慢的反应而规定的。我们提出了一种针对MPC控制器的基于规则的新型超驰控制(RBO),它使用一组启发式方法来初始化多巴胺。通过仿真结果说明了MPC/RBO控制器的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验