Wan J, Blakeley S D, Dennis D T, Ko K
Department of Biology, Queen's University, Kingston, Ontario, Canada.
J Biol Chem. 1995 Jul 14;270(28):16731-9. doi: 10.1074/jbc.270.28.16731.
Two cDNA clones encoding distinct forms of plastid pyruvate kinase (designated Pka and Pkg) have recently been characterized. Pkg is found in both leucoplasts and chloroplasts, whereas Pka is present only in leucoplasts. The precursors of these proteins have different in vitro import characteristics. The Pkg precursor behaves like a typical stromal protein precusor with both types of plastid. In contrast, Pka precursors accumulate on the outer envelope membrane of leucoplasts under the same assay conditions and require a higher level of ATP for import into the organelle. Interestingly, the binding of Pka precursors to chloroplasts cannot be detected at any tested level of ATP even though the precursors are imported into the organelle at higher concentrations of ATP. Various N-terminal deletions and chimeric fusions were used to examine the translocation signaling mechanism of the Pka precursor. The N-terminal 83-amino-acid segment of Pka contains a transit peptide that is capable of directing dihydrofolate reductase and the mature body of Pkg into both types of plastid. Unlike the complete Pka precursor, these fusion proteins behave like typical stromal protein precursors. The behavior of the Pka transit peptide is influenced by a 19-amino-acid domain (-P-S-S-I-E-V-D-A-V-T-E-T-E-L-K-E-N-G-F-) located immediately downstream of the N-terminal 83-residue segment. Deletion of this domain from Pka alters its import properties such that it resembles a typical stromal protein precursor. Re-introduction of the 19-residue domain into the Dhfr fusion protein alters its import characteristics to resemble that of the complete Pka precursor. This 19-amino-acid domain can also influence the function of transit sequences from other precursors when it is placed immediately behind the transit peptide. These results suggest that this 19-amino-acid domain plays an important role in governing the import characteristics of the Pka precursor. We have named this 19-residue segment the "import modifying domain."
最近已鉴定出两个编码质体丙酮酸激酶不同形式(分别命名为Pka和Pkg)的cDNA克隆。Pkg存在于白色体和叶绿体中,而Pka仅存在于白色体中。这些蛋白质的前体具有不同的体外导入特性。Pkg前体在两种类型的质体中表现得像典型的基质蛋白前体。相反,在相同的检测条件下,Pka前体在白色体外膜上积累,并且导入细胞器需要更高水平的ATP。有趣的是,即使在较高ATP浓度下前体可导入细胞器,但在任何测试的ATP水平下均未检测到Pka前体与叶绿体的结合。使用各种N端缺失和嵌合融合来研究Pka前体的转运信号机制。Pka的N端83个氨基酸片段包含一个转运肽,该转运肽能够将二氢叶酸还原酶和Pkg的成熟体导入两种类型的质体。与完整的Pka前体不同,这些融合蛋白表现得像典型的基质蛋白前体。Pka转运肽的行为受位于N端83个残基片段下游紧邻的19个氨基酸结构域(-P-S-S-I-E-V-D-A-V-T-E-T-E-L-K-E-N-G-F-)的影响。从Pka中缺失该结构域会改变其导入特性,使其类似于典型的基质蛋白前体。将19个残基的结构域重新引入Dhfr融合蛋白会改变其导入特性,使其类似于完整的Pka前体。当该19个氨基酸结构域置于转运肽紧邻的后面时,它也可以影响其他前体转运序列的功能。这些结果表明,这个19个氨基酸的结构域在控制Pka前体的导入特性中起重要作用。我们将这个19个残基的片段命名为“导入修饰结构域”。