Buchberger A, Theyssen H, Schröder H, McCarty J S, Virgallita G, Milkereit P, Reinstein J, Bukau B
Zentrum für Molekulare Biologie, Universität Heidelberg, Germany.
J Biol Chem. 1995 Jul 14;270(28):16903-10. doi: 10.1074/jbc.270.28.16903.
Interactions of the DnaK (Hsp70) chaperone from Escherichia coli with substrates are controlled by ATP. Nucleotide-induced changes in DnaK conformation were investigated by monitoring changes in tryptic digestion pattern and tryptophan fluorescence. Using nucleotide-free DnaK preparations, not only the known ATP-induced major changes in kinetics and pattern of proteolysis but also minor ADP-induced changes were detected. Similar ATP-induced conformational changes occurred in the DnaK-T199A mutant protein defective in ATPase activity, demonstrating that they result from binding, not hydrolysis, of ATP. N-terminal sequencing and immunological mapping of tryptic fragments of DnaK identified cleavage sites that, upon ATP addition, appeared within the proposed C-terminal substrate binding region and disappeared in the N-terminal ATPase domain. They hence reflect structural alterations in DnaK correlated to substrate release and indicate ATP-dependent domain interactions. Domain interactions are a prerequisite for efficient tryptic degradation as fragments of DnaK comprising the ATPase and C-terminal domains were highly protease-resistant. Fluorescence analysis of the N-terminally located single tryptophan residue of DnaK revealed that the known ATP-induced alteration of the emission spectrum, proposed to result directly from conformational changes in the ATPase domain, requires the presence of the C-terminal domain and therefore mainly results from altered domain interaction. Analyses of the C-terminally truncated DnaK163 mutant protein revealed that nucleotide-dependent interdomain communication requires a 15-kDa segment assumed to constitute the substrate binding site.
来自大肠杆菌的DnaK(热休克蛋白70,Hsp70)伴侣蛋白与底物的相互作用受ATP调控。通过监测胰蛋白酶消化模式和色氨酸荧光的变化,研究了核苷酸诱导的DnaK构象变化。使用无核苷酸的DnaK制剂,不仅检测到了已知的ATP诱导的蛋白水解动力学和模式的主要变化,还检测到了ADP诱导的微小变化。在ATPase活性有缺陷的DnaK - T199A突变蛋白中也发生了类似的ATP诱导的构象变化,表明这些变化是由ATP的结合而非水解引起的。对DnaK胰蛋白酶片段的N端测序和免疫定位确定了切割位点,添加ATP后,这些位点出现在推测的C端底物结合区域内,并在N端ATPase结构域中消失。因此,它们反映了与底物释放相关的DnaK结构改变,并表明了ATP依赖的结构域相互作用。结构域相互作用是有效胰蛋白酶降解的前提条件,因为包含ATPase和C端结构域的DnaK片段具有高度的蛋白酶抗性。对DnaK N端单个色氨酸残基的荧光分析表明,已知的ATP诱导的发射光谱改变,推测直接由ATPase结构域的构象变化引起,需要C端结构域的存在,因此主要是由结构域相互作用改变导致的。对C端截短的DnaK163突变蛋白的分析表明,核苷酸依赖的结构域间通讯需要一个假定构成底物结合位点的1 kDa片段。