Suppr超能文献

海蛞蝓(Clione limacina)运动的控制。VIII. 脑足神经元。

Control of locomotion in marine mollusk Clione limacina. VIII. Cerebropedal neurons.

作者信息

Panchin Y V, Popova L B, Deliagina T G, Orlovsky G N, Arshavsky Y I

机构信息

Institute of Problems of Information Transmission, Academy of Sciences of Russia.

出版信息

J Neurophysiol. 1995 May;73(5):1912-23. doi: 10.1152/jn.1995.73.5.1912.

Abstract
  1. The pteropod mollusk Clione limacina swims by rhythmical oscillations of two wings, and its spatial orientation during locomotion is determined by tail movements. The majority of neurons responsible for generation of the wing and tail movements are located in the pedal ganglia. On the other hand, the majority of sensory inputs that affect wing and tail movements project to the cerebral ganglia. The goal of the present study was to identify and characterize cerebropedal neurons involved in the control of the swimming central generator or motor neurons of wing and tail muscles. Cerebropedal neurons affecting locomotion-controlling mechanisms are located in the rostromedial (CPA neurons), caudomedial (CPB neurons), and central (CPC neurons) zones of the cerebral ganglia. According to their morphology and effects on pedal mechanisms, 10 groups of the cerebropedal neurons can be distinguished. 2. CPA1 neurons project through the ipsilateral cerebropedal connective to both pedal ganglia. Activation of a CPA1 by current injection resulted in speeding up of the locomotor rhythm and intensification of the firing of the locomotor motor neurons. 3. CPA2 neurons send numerous thin fibers into the ipsi- and contralateral pedal and pleural ganglia through the cerebropedal and cerebropleural connectives. They strongly inhibit the wing muscle motor neurons and, to a lesser extent, slow down the locomotor rhythm. 4. CPB1 neurons project through the contralateral cerebropedal connective to both pedal ganglia. They activate the locomotor generator. 5. CPB2 neurons also project, through the contralateral cerebropedal connective, to both pedal ganglia. They affect wing muscle motor neurons. 6. CPB3 neurons have diverse morphology: they project to the pedal ganglia either through the ipsilateral cerebropedal connective, or through the contralateral one, or through both of them. They affect putative motor neurons of the tail muscles. 7. CPC1, CPC2, and CPC3 neurons project through the ipsilateral cerebropedal connective to both pedal ganglia. They activate the locomotor generator. 8. CPC4 and CPC5 neurons project through the contralateral cerebropedal connective to the contralateral pedal ganglia. They activate the locomotor generator. 9. Serotonergic neurons were mapped in the CNS of Clione by immunohistochemical methods. Location and size of cells in two groups of serotonin-immunoreactive neurons in the cerebral ganglia appeared to be similar to those of CPA1 and CPB1 neurons. This finding suggests a possible mechanism for serotonin's ability to exert a strong excitatory action on the locomotor generator of Clione. 10. The role of different groups of cerebropedal neurons is discussed in relation to different forms of Clione's behavior in which locomotor activity is involved.
摘要
  1. 翼足类软体动物海天使通过两片翅膀的有节奏摆动来游泳,其运动过程中的空间定向由尾部运动决定。负责产生翅膀和尾部运动的大多数神经元位于足神经节。另一方面,影响翅膀和尾部运动的大多数感觉输入投射到脑神经节。本研究的目的是识别和表征参与控制游泳中枢发生器或翅膀和尾部肌肉运动神经元的脑足神经元。影响运动控制机制的脑足神经元位于脑神经节的吻内侧(CPA神经元)、尾内侧(CPB神经元)和中央(CPC神经元)区域。根据它们的形态和对足机制的影响,可以区分出10组脑足神经元。2. CPA1神经元通过同侧脑足连接投射到两个足神经节。通过电流注入激活CPA1会导致运动节律加快和运动运动神经元放电增强。3. CPA2神经元通过脑足和脑胸膜连接向同侧和对侧的足神经节和胸膜神经节发送许多细纤维。它们强烈抑制翅膀肌肉运动神经元,并在较小程度上减慢运动节律。4. CPB1神经元通过对侧脑足连接投射到两个足神经节。它们激活运动发生器。5. CPB2神经元也通过对侧脑足连接投射到两个足神经节。它们影响翅膀肌肉运动神经元。6. CPB3神经元形态多样:它们通过同侧脑足连接、对侧脑足连接或两者投射到足神经节。它们影响尾部肌肉的假定运动神经元。7. CPC1、CPC2和CPC3神经元通过同侧脑足连接投射到两个足神经节。它们激活运动发生器。8. CPC4和CPC5神经元通过对侧脑足连接投射到对侧足神经节。它们激活运动发生器。9. 通过免疫组织化学方法在海天使的中枢神经系统中绘制了5-羟色胺能神经元的分布图。脑神经节中两组5-羟色胺免疫反应性神经元的细胞位置和大小似乎与CPA1和CPB1神经元相似。这一发现提示了5-羟色胺对海天使运动发生器产生强烈兴奋作用的可能机制。10. 结合海天使涉及运动活动的不同行为形式,讨论了不同组脑足神经元的作用。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验