Neuroscience Institute, Georgia State University, Atlanta, Georgia 30302, and
Department of Biology, University of Massachusetts, Amherst, Massachusetts 01003.
J Neurosci. 2019 Aug 14;39(33):6460-6471. doi: 10.1523/JNEUROSCI.3229-18.2019. Epub 2019 Jun 17.
In motor systems, higher-order neurons provide commands to lower-level central pattern generators (CPGs) that autonomously produce rhythmic motor patterns. Such hierarchical organization is often thought to be inherent in the anatomical position of the neurons. Here, however, we report that a neuron that is member of a CPG in one species acts as a higher-order neuron in another species. In the nudibranch mollusc, , swim interneuron 1 (Si1) is in the CPG underlying swimming, firing rhythmic bursts of action potentials as part of the swim motor pattern. We found that its homolog in another nudibranch, , serves as a neuromodulatory command neuron for the CPG of a homologous swimming behavior. In , Si1 fired irregularly throughout the swim motor pattern. The burst and spike frequencies of swim CPG neurons correlated with Si1 firing frequency. Si1 activity was both necessary and sufficient for the initiation and maintenance of the swim motor pattern. Each Si1 was electrically coupled to all of the CPG neurons and made monosynaptic excitatory synapses with both Si3s. Si1 also bilaterally potentiated the excitatory synapse from Si3 to Si2. "Virtual neuromodulation" of both Si3-to-Si2 synapses using dynamic clamp combined with depolarization of both Si3s mimicked the effects of Si1 stimulation on the swim motor pattern. Thus, in , Si1 is a command neuron that turns on, maintains, and accelerates the motor pattern through synaptic and neuromodulatory actions, thereby differing from its homolog in in its functional position in the motor hierarchy. Cross-species comparisons of motor system organization can provide fundamental insights into their function and origin. Central pattern generators (CPGs) are lower in the functional hierarchy than the neurons that initiate and modulate their activity. This functional hierarchy is often reflected in neuroanatomical organization. This paper definitively shows that an identified cerebral ganglion neuron that is a member of a CPG underlying swimming in one nudibranch species serves as a command neuron for the same behavior in another species. We describe and test the synaptic and neuromodulatory mechanisms by which the command neuron initiates and accelerates rhythmic motor patterns. Thus, the functional position of neurons in a motor hierarchy can shift from one level to another over evolutionary time.
在运动系统中,高级神经元向自主产生节律性运动模式的低级中枢模式发生器 (CPG) 发出指令。这种分层组织通常被认为是神经元解剖位置的固有属性。然而,在这里,我们报告说,在一个物种中属于 CPG 的神经元在另一个物种中充当高级神经元。在裸鳃类软体动物中,游泳中间神经元 1 (Si1) 是游泳 CPG 的一部分,作为游泳运动模式的一部分,它会产生节律性的动作电位爆发。我们发现,它在另一种裸鳃类动物中的同源物,充当同源游泳行为 CPG 的神经调制命令神经元。在 中,Si1 在整个游泳运动模式中不规则地放电。 游泳 CPG 神经元的爆发和尖峰频率与 Si1 放电频率相关。Si1 的活动对于游泳运动模式的启动和维持是必要且充分的。每个 Si1 都与所有 CPG 神经元电耦合并与两个 Si3s 形成单突触兴奋性突触。Si1 还双侧增强 Si3 到 Si2 的兴奋性突触。使用动态钳位结合 Si3 去极化对 Si3-Si2 突触进行“虚拟神经调制”,模拟 Si1 刺激对游泳运动模式的影响。因此,在 中,Si1 是一种命令神经元,通过突触和神经调制作用打开、维持和加速运动模式,从而与它在 中的同源物在运动层次结构中的功能位置不同。跨物种比较运动系统的组织可以为其功能和起源提供基本的见解。中枢模式发生器 (CPG) 在功能层次结构中比启动和调节其活动的神经元低。这种功能层次结构通常反映在神经解剖组织中。本文明确表明,在一种裸鳃类动物的游泳 CPG 中作为成员的一个特定脑神经节神经元在另一种物种中充当同一行为的命令神经元。我们描述并测试了命令神经元启动和加速节律性运动模式的突触和神经调制机制。因此,在进化过程中,运动层次结构中神经元的功能位置可以从一个层次转移到另一个层次。