Coderre P E, Cloherty E K, Zottola R J, Carruthers A
Department of Biochemistry and Molecular Biology, University of Massachusetts Medical School, Worcester 01605, USA.
Biochemistry. 1995 Aug 1;34(30):9762-73. doi: 10.1021/bi00030a014.
The human erythroid glucose transporter is a GLUT1 homotetramer whose structure and function are stabilized by noncovalent, cooperative subunit interactions. The present study demonstrates that exofacial tryptic digestion of GLUT1 abolishes cooperative interactions between substrate binding sites on adjacent subunits under circumstances where subunit associations and high catalytic turnover are maintained. Extracellular trypsin produces rapid, quantitative cleavage of the human red cell-resident sugar transport protein, GLUT1. One major carboxyl-terminal peptide of M(r)(app) 25,000 is detected by immunoblot analysis. Endofacial tryptic digestion of GLUT1 results in the complete loss of GLUT1 carboxyl-terminal structure. GLUT1-mediated erythrocyte sugar uptake, transport inhibition by cytochalasin B, and GLUT1 oligomeric structure are unaffected by exofacial GLUT1 proteolysis. In contrast, the cytochalasin B binding capacity of GLUT1 and the Kd(app) for cytochalasin B binding to the transporter are doubled following exofacial tryptic digestion of GLUT1. Photoaffinity labeling experiments show that increased cytochalasin B binding results from increased ligand binding to the 25 kDa carboxyl-terminal GLUT1 peptide. Proteolysis abolishes allosteric interactions between sugar import (maltose binding) and sugar export (cytochalasin B binding) sites that normally exist on adjacent subunits within the transporter complex, but interact with negative cooperativity. Following exofacial proteolysis, these sites become mutually exclusive. Dithiothreitol disrupts GLUT1 quaternary structure, inhibits 3-O-methylglucose transport, and abolishes cooperative interactions between sugar import and export sites in control cells. Studies with reconstituted purified GLUT1 confirm that the action of trypsin on cytochalasin B binding is direct, show that proteolysis increases the apparent affinity of the sugar efflux site for transported sugars, and suggest that the membrane bilayer stabilizes GLUT1 noncovalent structure and catalytic function following GLUT1 proteolysis. Collectively, these findings demonstrate that GLUT1 does not require an intact polypeptide backbone for catalytic function. They show that the multisite sugar transporter mechanism is converted to a simple ping-pong carrier mechanism following exofacial GLUT1 proteolysis. They reveal that subunit cooperativity can be lost under circumstances where cohesive structural interactions between transporter subunits are maintained. They also refute the hypothesis [Hebert, D. N., & Carruthers, A. (1992) J. Biol. Chem. 267, 23829-23838] that rapid substrate translocation by the multisubunit erythroid glucose transporter requires cooperative interactions between subunit ligand binding sites.
人类红细胞葡萄糖转运蛋白是一种GLUT1同四聚体,其结构和功能通过非共价的协同亚基相互作用得以稳定。本研究表明,在维持亚基缔合和高催化周转率的情况下,对GLUT1进行外表面胰蛋白酶消化会消除相邻亚基上底物结合位点之间的协同相互作用。细胞外胰蛋白酶能快速、定量地切割驻留在人类红细胞中的糖转运蛋白GLUT1。通过免疫印迹分析检测到一个表观分子量为25,000的主要羧基末端肽段。对GLUT1进行内表面胰蛋白酶消化会导致GLUT1羧基末端结构完全丧失。GLUT1介导的红细胞糖摄取、细胞松弛素B对转运的抑制作用以及GLUT1的寡聚结构不受GLUT1外表面蛋白水解的影响。相比之下,对GLUT1进行外表面胰蛋白酶消化后,GLUT1与细胞松弛素B的结合能力以及细胞松弛素B与转运蛋白结合的解离常数(Kd(app))增加了一倍。光亲和标记实验表明,细胞松弛素B结合增加是由于配体与25 kDa羧基末端GLUT1肽段的结合增加所致。蛋白水解消除了转运蛋白复合物中相邻亚基上通常存在的糖输入(麦芽糖结合)和糖输出(细胞松弛素B结合)位点之间的变构相互作用,这些相互作用以负协同性相互作用。外表面蛋白水解后,这些位点变得相互排斥。二硫苏糖醇破坏GLUT1的四级结构,抑制3 - O - 甲基葡萄糖转运,并消除对照细胞中糖输入和输出位点之间的协同相互作用。对重组纯化的GLUT1的研究证实胰蛋白酶对细胞松弛素B结合的作用是直接的,表明蛋白水解增加了糖流出位点对转运糖的表观亲和力,并表明膜双层在GLUT1蛋白水解后稳定了GLUT1的非共价结构和催化功能。总体而言,这些发现表明GLUT1的催化功能并不需要完整的多肽主链。它们表明,GLUT1外表面蛋白水解后,多位点糖转运机制转变为简单的乒乓载体机制。它们揭示了在转运蛋白亚基之间保持内聚结构相互作用的情况下,亚基协同性可能会丧失。它们还反驳了[赫伯特,D. N.,& 卡拉瑟斯,A.(1992年)《生物化学杂志》267,23829 - 23838]的假设,即多亚基红细胞葡萄糖转运蛋白的快速底物转运需要亚基配体结合位点之间的协同相互作用。