Fernandez R, Tabarini D, Azpiazu N, Frasch M, Schlessinger J
Department of Pharmacology, New York University Medical Center, NY 10016, USA.
EMBO J. 1995 Jul 17;14(14):3373-84. doi: 10.1002/j.1460-2075.1995.tb07343.x.
We report the cloning and primary structure of the Drosophila insulin receptor gene (inr), functional expression of the predicted polypeptide, and the isolation of mutations in the inr locus. Our data indicate that the structure and processing of the Drosophila insulin proreceptor are somewhat different from those of the mammalian insulin and IGF 1 receptor precursors. The INR proreceptor (M(r) 280 kDa) is processed proteolytically to generate an insulin-binding alpha subunit (M(r) 120 kDa) and a beta subunit (M(r) 170 kDa) with protein tyrosine kinase domain. The INR beta 170 subunit contains a novel domain at the carboxyterminal side of the tyrosine kinase, in the form of a 60 kDa extension which contains multiple potential tyrosine autophosphorylation sites. This 60 kDa C-terminal domain undergoes cell-specific proteolytic cleavage which leads to the generation of a total of four polypeptides (alpha 120, beta 170, beta 90 and a free 60 kDa C-terminus) from the inr gene. These subunits assemble into mature INR receptors with the structures alpha 2(beta 170)2 or alpha 2(beta 90)2. Mammalian insulin stimulates tyrosine phosphorylation of both types of beta subunits, which in turn allows the beta 170, but not the beta 90 subunit, to bind directly to p85 SH2 domains of PI-3 kinase. It is likely that the two different isoforms of INR have different signaling potentials. Finally, we show that loss of function mutations in the inr gene, induced by either a P-element insertion occurring within the predicted ORF, or by ethylmethane sulfonate treatment, render pleiotropic recessive phenotypes that lead to embryonic lethality. The activity of inr appears to be required in the embryonic epidermis and nervous system among others, since development of the cuticle, as well as the peripheral and central nervous systems are affected by inr mutations.
我们报道了果蝇胰岛素受体基因(inr)的克隆、一级结构、预测多肽的功能表达以及inr基因座突变的分离。我们的数据表明,果蝇胰岛素原受体的结构和加工过程与哺乳动物胰岛素和IGF 1受体前体的结构和加工过程有所不同。INR原受体(分子量280 kDa)经蛋白水解加工产生一个胰岛素结合α亚基(分子量120 kDa)和一个具有蛋白酪氨酸激酶结构域的β亚基(分子量170 kDa)。INRβ170亚基在酪氨酸激酶的羧基末端侧含有一个新结构域,呈60 kDa延伸形式,其中包含多个潜在的酪氨酸自磷酸化位点。这个60 kDa的C末端结构域经历细胞特异性蛋白水解切割,导致inr基因总共产生四种多肽(α120、β170、β90和一个游离的60 kDa C末端)。这些亚基组装成具有α2(β170)2或α2(β90)2结构的成熟INR受体。哺乳动物胰岛素刺激两种类型β亚基的酪氨酸磷酸化,这反过来又使β170亚基而非β90亚基直接与PI-3激酶的p85 SH2结构域结合。很可能INR的两种不同同工型具有不同的信号传导潜能。最后,我们表明,由预测的开放阅读框内发生的P因子插入或乙基甲磺酸处理诱导的inr基因功能丧失突变会导致多效性隐性表型,从而导致胚胎致死。inr的活性似乎在胚胎表皮和神经系统等中是必需的,因为表皮以及外周和中枢神经系统的发育会受到inr突变的影响。