El Fissi Najla, Rosenberger Florian A, Chang Kai, Wilhalm Alissa, Barton-Owen Tom, Hansen Fynn M, Golder Zoe, Alsina David, Wedell Anna, Mann Matthias, Chinnery Patrick F, Freyer Christoph, Wredenberg Anna
Department of Medical Biochemistry and Biophysics, Karolinska Institutet, 171 65, Stockholm, Sweden.
Proteomics and Signal Transduction, Max-Planck Institute of Biochemistry, Martinsried, 82152, Germany.
Nat Commun. 2024 Dec 23;15(1):10719. doi: 10.1038/s41467-024-55559-2.
Aberration of mitochondrial function is a shared feature of many human pathologies, characterised by changes in metabolic flux, cellular energetics, morphology, composition, and dynamics of the mitochondrial network. While some of these changes serve as compensatory mechanisms to maintain cellular homeostasis, their chronic activation can permanently affect cellular metabolism and signalling, ultimately impairing cell function. Here, we use a Drosophila melanogaster model expressing a proofreading-deficient mtDNA polymerase (POLγ) in a genetic screen to find genes that mitigate the harmful accumulation of mtDNA mutations. We identify critical pathways associated with nutrient sensing, insulin signalling, mitochondrial protein import, and autophagy that can rescue the lethal phenotype of the POLγ flies. Rescued flies, hemizygous for dilp1, atg2, tim14 or melted, normalise their autophagic flux and proteasome function and adapt their metabolism. Mutation frequencies remain high with the exception of melted-rescued flies, suggesting that melted may act early in development. Treating POLγ larvae with the autophagy activator rapamycin aggravates their lethal phenotype, highlighting that excessive autophagy can significantly contribute to the pathophysiology of mitochondrial diseases. Moreover, we show that the nucleation process of autophagy is a critical target for intervention.
线粒体功能异常是许多人类疾病的共同特征,其特点是线粒体网络的代谢通量、细胞能量学、形态、组成和动力学发生变化。虽然其中一些变化作为维持细胞稳态的补偿机制,但它们的长期激活会永久性地影响细胞代谢和信号传导,最终损害细胞功能。在这里,我们在基因筛选中使用表达校对缺陷型线粒体DNA聚合酶(POLγ)的黑腹果蝇模型来寻找减轻线粒体DNA突变有害积累的基因。我们确定了与营养感知、胰岛素信号传导、线粒体蛋白导入和自噬相关的关键途径,这些途径可以挽救POLγ果蝇的致死表型。对于dilp1、atg2、tim14或melted基因半合子的获救果蝇,其自噬通量和蛋白酶体功能恢复正常,并调整了它们的代谢。除了melted基因获救的果蝇外,突变频率仍然很高,这表明melted基因可能在发育早期起作用。用自噬激活剂雷帕霉素处理POLγ幼虫会加重其致死表型,突出表明过度自噬会显著促成线粒体疾病的病理生理学。此外,我们表明自噬的成核过程是一个关键的干预靶点。