Smith D H, Soares H D, Pierce J S, Perlman K G, Saatman K E, Meaney D F, Dixon C E, McIntosh T K
Department of Surgery, University of Pennsylvania, Philadelphia, USA.
J Neurotrauma. 1995 Apr;12(2):169-78. doi: 10.1089/neu.1995.12.169.
Controlled cortical impact (CCI), using a pneumatically driven impactor to produce traumatic brain injury, has been characterized previously in both the ferret and in the rat. In the present study, we applied this technique to establish and characterize the CCI model of brain injury in another species, the mouse, evaluating cognitive and histopathologic outcome. In anesthetized (sodium pentobarbital, 65 mg/kg) male C57BL mice, we performed sham treatment (no injury, n = 12) or CCI injury (n = 12) at a velocity of 5.7-6.2 m/sec and depth of 1 mm, using a 3-mm diameter rounded-tip impounder, positioned over the left parietotemporal cortex (parasagittal). At this level of injury, we observed highly significant deficits in memory retention of a Morris water maze task 2 days following injury (p < 0.001). Postmortem histopathologic analysis performed at 48 h following injury revealed substantial cortical tissue loss in the region of impact and selective hippocampal neuronal cell loss in the CA2, CA3, and CA3c regions, using Nissl staining. Analysis of degenerating neurons using modified Gallyas silver staining techniques demonstrated consistent ipsilateral injury of neurons in the cortex adjacent to the impact site and in the dentate gyrus of the ipsilateral hippocampus. Bilateral degeneration was observed at the gray matter-white matter interface along the corpus callosum. Glial fibrillary acidic protein (GFAP) immunohistochemistry revealed extensive reactive gliosis appearing diffusely through the bilateral cortices, hippocampi, and thalami at 48 h postinjury. Breakdown of the blood-brain barrier was demonstrated with antimouse IgG immunohistochemistry, revealing extravasation of endogenous IgG throughout the ipsilateral cortex, hippocampus, and thalamus. These results suggest that this new model of parasagittal CCI in the mouse mimics a number of well-established sequelae observed in previously characterized brain injury models using other rodent species. This mouse model may be a particularly useful experimental tool for comparing behavioral and histopathologic characteristics of traumatic brain injury in wild-type and genetically altered mice.
使用气动冲击器造成创伤性脑损伤的控制性皮质撞击(CCI)技术,此前已在雪貂和大鼠身上得到描述。在本研究中,我们应用该技术在另一种动物——小鼠中建立并描述脑损伤的CCI模型,评估认知和组织病理学结果。在麻醉(戊巴比妥钠,65mg/kg)的雄性C57BL小鼠中,我们进行假处理(无损伤,n = 12)或CCI损伤(n = 12),使用直径3mm的圆头冲击器,以5.7 - 6.2m/秒的速度和1mm的深度,置于左侧顶颞叶皮质(矢状旁)上方。在这个损伤水平,我们观察到损伤后2天,小鼠在莫里斯水迷宫任务的记忆保持方面存在极显著缺陷(p < 0.001)。损伤后48小时进行的死后组织病理学分析显示,使用尼氏染色法,撞击区域有大量皮质组织损失,CA2、CA3和CA3c区域有选择性海马神经元细胞损失。使用改良的加利亚斯银染色技术对变性神经元进行分析,结果表明,撞击部位相邻皮质以及同侧海马齿状回中的神经元存在一致的同侧损伤。在胼胝体的灰质 - 白质界面观察到双侧变性。胶质纤维酸性蛋白(GFAP)免疫组织化学显示,损伤后48小时,双侧皮质、海马和丘脑弥漫性出现广泛的反应性胶质增生。用抗小鼠IgG免疫组织化学证明血脑屏障破坏,显示内源性IgG在同侧皮质、海马和丘脑中渗出。这些结果表明,这种小鼠矢状旁CCI新模型模拟了在先前使用其他啮齿动物物种描述的脑损伤模型中观察到的许多既定后遗症。该小鼠模型可能是比较野生型和基因改变小鼠创伤性脑损伤行为和组织病理学特征的特别有用的实验工具。