Suppr超能文献

[当代抗寄生虫药物建模策略与方法]

[Contemporary strategies and methods of modeling antiparasitic drugs].

作者信息

Boczoń K

机构信息

Katedra i Zakład Biologii i Parazytologii Lekarskiej AM, Poznań.

出版信息

Wiad Parazytol. 1995;41(1):43-52.

PMID:7638963
Abstract

Contemporary methods of directed chemotherapy are based on multi-step procedures, which require co-ordinated activities of interdisciplinary teams of biochemists, pharmacologists, geneticists, crystallographers as well as computer scientists. Biochemists select the proper target, such as an enzyme, throughout screening of the biochemical influence of compounds-potential drugs on this target. For further research they use targets with very low inhibition constants (> 10(-6) M). Determination of the relation between therapeutic activity of the compound and modelling of its chemical structure constitutes an important part of the procedure. The most important part of the procedure is the recognition of the primary structure of the target. The two following pathways allow to do that: 1. isolation of DNA and gDNA or cDNA-started cloning of a gene responsible for production of the target protein and then its sequencing. 2. purification and crystallization of the target protein and further computer-aided processing of crystallographic data in order to determine the primary structure. Computational chemistry (C/C) methods are the basic part of the procedure of molecular modelling (M/M) of a target molecule and its interactions with a molecule of the future drug. Data obtained using a technology which engages the C/C and M/M methods not only allow to determine the aminoacid sequence of the target protein in question (e.g. a unique parasite enzyme); they also enable to further speculate on its secondary and tertiary structures. Such structure includes specified number of repeated motifs of alpha-helixes, beta-sheets and loops or turns. Particularly, the "barrel" structure is very common in numerous enzymes. Two following examples of research on target-antiparasitic drug interactions is presented. They are the interaction between phosphoglicerate kinase in Leishmania and drug suramin and malic enzyme of Trichinella and drug closantel. New promising targets for new anti-protozoan drugs (protozoa of Trypanosoma species) include e.g. microbody translocation signal in kinetosom proteins (SKL) or protein blocking the transport of proteins to glycosomes-metabolic centres in Trypanosoma (repetitive groups of QRLQ). Recently, scientists from Arris Pharmaceutical (San Francisco) have considered, employing new data, up to 100 to fully characterize the surface structure of a molecule, using the systems of artificial intelligence.

摘要

当代定向化疗方法基于多步骤程序,这需要生物化学家、药理学家、遗传学家、晶体学家以及计算机科学家等跨学科团队的协同合作。生物化学家通过筛选化合物(潜在药物)对目标(如一种酶)的生化影响来选择合适的靶点。对于进一步研究,他们使用抑制常数极低(>10⁻⁶ M)的靶点。确定化合物的治疗活性与其化学结构建模之间的关系是该程序的重要组成部分。该程序最重要的部分是识别靶点的一级结构。以下两种途径可以做到这一点:1. 分离DNA和基因组DNA或互补DNA,开始克隆负责产生目标蛋白的基因,然后对其进行测序。2. 纯化和结晶目标蛋白,并对晶体学数据进行进一步的计算机辅助处理,以确定一级结构。计算化学(C/C)方法是目标分子及其与未来药物分子相互作用的分子建模(M/M)程序的基本组成部分。使用结合C/C和M/M方法的技术获得的数据不仅可以确定所讨论的目标蛋白的氨基酸序列(例如一种独特的寄生虫酶);还能够进一步推测其二级和三级结构。这种结构包括特定数量的α螺旋、β折叠以及环或转角的重复基序。特别是,“桶状”结构在众多酶中非常常见。下面给出两个关于靶点 - 抗寄生虫药物相互作用的研究实例。它们分别是利什曼原虫中的磷酸甘油酸激酶与药物苏拉明之间的相互作用,以及旋毛虫中的苹果酸酶与药物氯氰碘柳胺之间的相互作用。新型抗原生动物药物(锥虫属原生动物)的新的有前景的靶点包括例如动基体蛋白中的微体转运信号(SKL)或阻止蛋白质向锥虫糖体(代谢中心)转运的蛋白质(QRLQ重复基团)。最近,来自旧金山阿瑞斯制药公司的科学家考虑利用新数据,使用人工智能系统对多达100种分子的表面结构进行全面表征。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验