Hahn M G, Cheong J J, Alba R, Côté F
Complex Carbohydrates Research Centre, University of Georgia, Athens 30602-4712, USA.
Biochem Soc Symp. 1994;60:101-12.
We are studying the cellular signalling pathway leading to pterocarpan phytoalexin biosynthesis in soybean that is induced by a branched hepta-beta-glucoside originally isolated from the mycelial walls of the phytopathogenic oomycete, Phytophthora megasperma f. sp. glycinea. Our research has focused on the first step in this signal pathway, namely the specific recognition of the hepta-beta-glucoside elicitor by plasma-membrane-localized binding protein(s) in soybean cells. Binding of a radio-iodinated derivative of the elicitor-active hepta-beta-glucoside by membrane elicitor-binding proteins is specific, reversible, saturable and of high affinity (Kd = 0.75 nM). After solubilization using the non-ionic detergent n-dodecylsucrose, the elicitor-binding proteins retain the binding affinity (Kd = 1.8 nM) for the radiolabelled elicitor and the binding specificity for elicitor-active oligoglucosides. A direct correlation is observed between the ability of elicitor-active and structurally related inactive oligoglucosides to displace labelled elicitor from the elicitor-binding proteins and the elicitor activity of the oligosaccharides. Thus, the elicitor-binding proteins recognize the same structural elements of the hepta-beta-glucoside elicitor that are essential for its phytoalexin-inducing activity, suggesting that the elicitor-binding proteins are physiological receptors for the elicitor. Current research is directed toward the purification and cloning of the hepta-beta-glucoside elicitor-binding proteins. Purification and characterization of the hepta-beta-glucoside-binding protein(s) or their corresponding cDNAs is a first step toward elucidating how the hepta-beta-glucoside elicitor triggers the signal transduction pathway that ultimately leads to the synthesis of phytoalexins in soybean.
我们正在研究大豆中导致紫檀素植保素生物合成的细胞信号通路,该通路由最初从植物病原卵菌大豆疫霉 f. sp. glycinea 的菌丝壁中分离出的一种分支七-β-葡萄糖苷诱导。我们的研究集中在该信号通路的第一步,即大豆细胞中质膜定位的结合蛋白对七-β-葡萄糖苷激发子的特异性识别。激发子活性七-β-葡萄糖苷的放射性碘化衍生物与膜激发子结合蛋白的结合是特异性的、可逆的、可饱和的且具有高亲和力(Kd = 0.75 nM)。使用非离子去污剂正十二烷基蔗糖溶解后,激发子结合蛋白对放射性标记激发子仍保留结合亲和力(Kd = 1.8 nM),并对激发子活性寡糖苷具有结合特异性。在激发子活性和结构相关的无活性寡糖苷从激发子结合蛋白上取代标记激发子的能力与寡糖的激发子活性之间观察到直接相关性。因此,激发子结合蛋白识别七-β-葡萄糖苷激发子中对其植保素诱导活性至关重要的相同结构元件,这表明激发子结合蛋白是激发子的生理受体。目前的研究方向是七-β-葡萄糖苷激发子结合蛋白的纯化和克隆。七-β-葡萄糖苷结合蛋白或其相应 cDNA 的纯化和表征是阐明七-β-葡萄糖苷激发子如何触发最终导致大豆中植保素合成的信号转导通路的第一步。