Yamaguchi T, Yamada A, Hong N, Ogawa T, Ishii T, Shibuya N
Department of Biotechnology, National Institute of Agrobiological Resources, Tsukuba, Ibaraki 305-0826, Japan.
Plant Cell. 2000 May;12(5):817-26. doi: 10.1105/tpc.12.5.817.
Partial acid/enzymatic hydrolysis of the beta-(1-->3, 1-->6)-glucan from the cell walls of the rice blast disease fungus Pyricularia oryzae (Magnaporthe grisea) released elicitor-active fragments that induced phytoalexin biosynthesis in suspension-cultured rice cells. From the digestion of the glucan by an endo-beta-(1-->3)-glucanase, one highly elicitor-active glucopentaose was purified as a reduced compound, tetraglucosyl glucitol. The structure of this tetraglucosyl glucitol as well as two other related tetraglucosyl glucitols was elucidated as follows: (1) Glcbeta(1-->3)Glcbeta(1-->3)(Glcbeta(1-->6)) Glcbeta(1-->3)Glucitol (most active fragment); (2) Glcbeta(1-->3)(Glcbeta(1-->6))Glcbeta(1-->3)Glcbeta (1-->3)Glucitol; and (3) Glcbeta(1-->6) Glcbeta(1-->3)Glcbeta(1-->3)Glcbeta(1-->3)Glucitol. However, a synthetic hexa-beta-glucoside, known as a minimal structural element for the phytoalexin elicitor for soybean cotyledon cells, did not induce phytoalexin biosynthesis in the rice cells. Conversely, the beta-glucan fragment from P. oryzae did not induce phytoalexin biosynthesis in the soybean cotyledon cells, indicating differences in the recognition of glucooligosaccharide elicitor signals in these two plants. Because rice cells have been shown to recognize chitin fragments larger than pentamers as potent elicitors, these results also indicate that the rice cells can recognize at least two types of oligosaccharides from fungal cell walls as signal molecules to initiate defense response.
对稻瘟病菌(稻瘟菌)细胞壁中的β-(1→3, 1→6)-葡聚糖进行部分酸/酶水解,可释放出诱导悬浮培养水稻细胞中植保素生物合成的激发子活性片段。通过内切β-(1→3)-葡聚糖酶消化该葡聚糖,一种高激发子活性的葡糖五糖被纯化出来,为还原型化合物四葡糖基葡糖醇。该四葡糖基葡糖醇以及另外两种相关的四葡糖基葡糖醇的结构如下:(1) Glcbeta(1→3)Glcbeta(1→3)(Glcbeta(1→6)) Glcbeta(1→3)Glucitol(活性最强的片段);(2) Glcbeta(1→3)(Glcbeta(1→6))Glcbeta(1→3)Glcbeta (1→3)Glucitol;以及(3) Glcbeta(1→6) Glcbeta(1→3)Glcbeta(1→3)Glcbeta(1→3)Glucitol。然而,一种合成的六-β-葡糖苷,即大豆子叶细胞植保素激发子的最小结构元件,并未在水稻细胞中诱导植保素生物合成。相反,来自稻瘟病菌的β-葡聚糖片段并未在大豆子叶细胞中诱导植保素生物合成,这表明这两种植物在识别低聚糖激发子信号方面存在差异。由于已证明水稻细胞能够识别大于五聚体的几丁质片段作为有效的激发子,这些结果还表明水稻细胞能够识别至少两种来自真菌细胞壁的低聚糖作为启动防御反应的信号分子。