Monks T J
Division of Pharmacology and Toxicology College of Pharmacy University of Texas at Austin 78712, USA.
Drug Metab Rev. 1995;27(1-2):93-106. doi: 10.3109/03602539509029817.
A variety of cytotoxic, mutagenic, and carcinogenic conjugates of GSH require processing by enzymes of the mercapturic acid pathway to produce toxicity. However, metabolism of quinone-thioethers by gamma-GT can result in either activation or detoxication. For example, inhibition of gamma-GT completely protects against the nephrotoxicity caused by 2-bromo-bis-(glutathion-S-yl)hydroquinone and 2,3,5-tris-(glutathion-S-ly)hydroquinone, whereas the same protocol potentiates the nephrotoxicity of 2,5-dichloro-3-(glutathion-S-yl)hydroquinone and 2,5,6-trichloro-3-(glutathion-S-yl)hydroquinone. Which of these two scenarios occur as a consequence of metabolism by gamma-GT appears to be determined by the relative rate at which the product is transported into cells and/or interacts with cellular constituents, and the rate which the product undergoes intramolecular detoxication (cyclization) to a 1,4-benzothiazine. The same reaction may also explain why the mercapturic acid metabolite of menadione is nephrotoxic following systemic administration, whereas the GSH conjugate is without activity. Species differences exist in susceptibility to both 2-bromo-bis-(glutathion-S-ly)hydroquinone and 2,3,5-tris(glutathion-S-ly)hydroquinone induced nephrotoxicity. In this case, however, susceptibility does not correlate with renal gamma-GT activity, but rather to differences in the rate at which the corresponding cysteine and N-acetylcysteine conjugates undergo N-acetylation/N-deacetylation cycling. Thus the guinea pig--which is the only other rodent species (in addition to the rat), that is susceptible to 2-bromo-bis-(glutathion-S-ly)hydroquinone and 2,3,5-tris-(glutathion-S-ly)hydroquinone mediated nephrotoxicity--expresses the lowest activity of renal gamma-GT but exhibits the highest N-deacetylation:N-acetylation ratio. Differences in kinetics of these two reactions therefore contribute to species susceptibility. The toxicity of quinol/quinone thioethers is dependent upon a number of physiological, biochemical, and electrochemical factors. The rates at which quinol-thioethers undergo oxidation, with the concomitant generation of reactive oxygen species (IV, Fig. 1), macromolecular arylation (V, Fig. 1), intramolecular cyclization (VI, Fig. 1), and acetylation-deacetylation cycling (III, Fig. 1) is dependent upon the substrate in question. All these factors will contribute to the cell, tissue, and species susceptibility of this interesting class of GSH conjugates.
谷胱甘肽(GSH)的多种具有细胞毒性、致突变性和致癌性的共轭物需要通过硫醚氨酸途径的酶进行处理才能产生毒性。然而,γ-谷氨酰转肽酶(gamma-GT)对醌硫醚的代谢可能导致激活或解毒。例如,抑制γ-谷氨酰转肽酶可完全预防由2-溴-双-(谷胱甘肽-S-基)对苯二酚和2,3,5-三-(谷胱甘肽-S-基)对苯二酚引起的肾毒性,而相同的方案会增强2,5-二氯-3-(谷胱甘肽-S-基)对苯二酚和2,5,6-三氯-3-(谷胱甘肽-S-基)对苯二酚的肾毒性。γ-谷氨酰转肽酶代谢产生的这两种情况中的哪一种似乎取决于产物转运到细胞内和/或与细胞成分相互作用的相对速率,以及产物进行分子内解毒(环化)生成1,4-苯并噻嗪的速率。同样的反应也可以解释为什么维生素K3的硫醚氨酸代谢产物在全身给药后具有肾毒性,而谷胱甘肽共轭物却没有活性。对2-溴-双-(谷胱甘肽-S-基)对苯二酚和2,3,5-三-(谷胱甘肽-S-基)对苯二酚诱导的肾毒性的易感性存在物种差异。然而,在这种情况下,易感性与肾脏γ-谷氨酰转肽酶活性无关,而是与相应的半胱氨酸和N-乙酰半胱氨酸共轭物进行N-乙酰化/N-脱乙酰化循环的速率差异有关。因此,豚鼠——是除大鼠外唯一对2-溴-双-(谷胱甘肽-S-基)对苯二酚和2,3,5-三-(谷胱甘肽-S-基)对苯二酚介导的肾毒性敏感的啮齿动物物种——肾脏γ-谷氨酰转肽酶活性最低,但N-脱乙酰化:N-乙酰化比率最高。因此,这两种反应动力学的差异导致了物种易感性。喹醇/醌硫醚的毒性取决于许多生理、生化和电化学因素。喹醇硫醚发生氧化的速率,以及随之产生的活性氧(图1中的IV)、大分子芳基化(图1中的V)、分子内环化(图1中的VI)和乙酰化-脱乙酰化循环(图1中的III)取决于所讨论的底物。所有这些因素都将导致这类有趣的谷胱甘肽共轭物对细胞、组织和物种的易感性。