Peters M M, Jones T W, Monks T J, Lau S S
Division of Pharmacology and Toxicology, College of Pharmacy, University of Texas at Austin, 78712, USA.
Carcinogenesis. 1997 Dec;18(12):2393-401. doi: 10.1093/carcin/18.12.2393.
Hydroquinone, an intermediate used in the chemical industry and a metabolite of benzene, is a nephrocarcinogen in the 2-year National Toxicology Program bioassay in male Fischer 344 rats. Current evidence suggests that certain chemicals may induce carcinogenesis by a mechanism involving cytotoxicity, followed by sustained regenerative hyperplasia and ultimately tumor formation. Glutathione (GSH) conjugates of a variety of hydroquinones are potent nephrotoxicants, and we now report on the effect of hydroquinone and 2,3,5-(tris-glutathion-S-yl)hydroquinone, on site-selective cytotoxicity and cell proliferation in rat kidney. Male Fischer 344 rats (160-200 g) were treated with hydroquinone (1.8 mmol/kg or 4.5 mmol/kg, p.o.) or 2,3,5-(tris-glutathion-S-yl)hydroquinone (7.5 micromol/kg; 1.2-1.5 micromol/rat, i.v.), and blood urea nitrogen (BUN), urinary gamma-glutamyl transpeptidase (gamma-GT), alkaline phosphatase (ALP), glutathione-S-transferase (GST) and glucose were measured as indices of nephrotoxicity. Hydroquinone (1.8 mmol/kg, p.o.) is nephrotoxic in some rats, but not others, but cell proliferation (BrDU incorporation) in proximal tubular cells of the S3M region correlates with the degree of toxicity in individual rats. At 4.5 mmol/kg, hydroquinone causes significant increases in the urinary excretion of gamma-GT, ALP and GST. Pretreatment of rats with acivicin prevents hydroquinone-mediated nephrotoxicity, indicating that toxicity is dependent on the formation of metabolites that require processing by gamma-GT. Consistent with this view, 2,3,5-(tris-glutathion-S-yl)hydroquinone, a metabolite of hydroquinone, causes increases in BUN, urinary gamma-GT and ALP, all of which are maximal 12 h after administration of 2,3,5-(tris-glutathion-S-yl)hydroquinone. In contrast, the maximal excretion of GST and glucose occurs after 24 h. By 72 h, BUN and glucose concentrations return to control levels, while gamma-GT, ALP and GST remain slightly elevated. Examination of kidney slices by light microscopy revealed the presence of tubular necrosis in the S3M segment of the proximal tubule, extending into the medullary rays. Cell proliferation rates in this region were 2.4, 6.9, 15.3 and 14.3% after 12, 24, 48 and 72 h, respectively, compared to 0.8-2.4% in vehicle controls. Together with the metabolic data, the results indicate a role for hydroquinone-thioether metabolites in hydroquinone toxicity and carcinogenicity.
对苯二酚是化学工业中使用的一种中间体,也是苯的代谢产物,在为期两年的国家毒理学计划对雄性Fischer 344大鼠的生物测定中是一种肾致癌物。目前的证据表明,某些化学物质可能通过一种涉及细胞毒性的机制诱导致癌作用,随后是持续的再生性增生,最终形成肿瘤。多种对苯二酚的谷胱甘肽(GSH)结合物是强效肾毒物,我们现在报告对苯二酚和2,3,5-(三谷胱甘肽-S-基)对苯二酚对大鼠肾脏位点选择性细胞毒性和细胞增殖的影响。雄性Fischer 344大鼠(160-200克)经口给予对苯二酚(1.8毫摩尔/千克或4.5毫摩尔/千克)或静脉注射2,3,5-(三谷胱甘肽-S-基)对苯二酚(7.5微摩尔/千克;1.2-1.5微摩尔/只大鼠),并测量血尿素氮(BUN)、尿γ-谷氨酰转肽酶(γ-GT)、碱性磷酸酶(ALP)、谷胱甘肽-S-转移酶(GST)和葡萄糖作为肾毒性指标。对苯二酚(1.8毫摩尔/千克,经口)在一些大鼠中具有肾毒性,但在其他大鼠中则无,但是S3M区域近端肾小管细胞中的细胞增殖(溴脱氧尿苷掺入)与个体大鼠的毒性程度相关。在4.5毫摩尔/千克时,对苯二酚导致γ-GT、ALP和GST的尿排泄显著增加。用阿西维辛预处理大鼠可预防对苯二酚介导的肾毒性,表明毒性取决于需要γ-GT加工的代谢产物的形成。与此观点一致,对苯二酚的一种代谢产物2,3,5-(三谷胱甘肽-S-基)对苯二酚导致BUN、尿γ-GT和ALP增加,所有这些在给予2,3,5-(三谷胱甘肽-S-基)对苯二酚后12小时达到最大值。相比之下,GST和葡萄糖的最大排泄发生在24小时后。到72小时时,BUN和葡萄糖浓度恢复到对照水平,而γ-GT、ALP和GST仍略有升高。通过光学显微镜检查肾脏切片发现近端小管S3M段存在肾小管坏死,延伸至髓放线。该区域的细胞增殖率在12、24、48和72小时后分别为2.4%、6.9%、15.3%和14.3%,而载体对照组为0.8-2.4%。与代谢数据一起,结果表明对苯二酚硫醚代谢产物在对苯二酚毒性和致癌性中起作用。