Bernardinelli L, Montomoli C, Ghislandi M, Pascutto C
Istituto di Scienze Sanitarie Applicate, Università degli Studi di Pavia.
Epidemiol Prev. 1995 Jun;19(63):175-89.
Studying the space-time variation of risk for a given disease may give etiological clues and suggestions for planning further studies to investigate the underlying causes. When the observed events are rare, approaches based on maximum likelihood may lead to unstable and largely uninformative estimates of risk and of its time trend due to Poisson sampling variation. In this paper we propose a general Bayesian model for analyzing the variation of risk in space and time. We applied the Bayesian model to the analysis of the geographical variation of breast cancer mortality, to an ecological study on the correlation between lung cancer mortality and degree of urbanization and industrialization and to the analysis of the space-time variation of cumulative prevalence of Insulin Dependent Diabetes Mellitus (IDDM) as observed in military examinations between 1954 and 1989.
研究特定疾病风险的时空变化,可能会为病因提供线索,并为规划进一步研究以探究潜在病因提供建议。当观察到的事件较为罕见时,基于最大似然法的方法可能会由于泊松抽样变异,导致风险及其时间趋势的估计不稳定且基本无信息价值。在本文中,我们提出了一个用于分析风险时空变化的通用贝叶斯模型。我们将该贝叶斯模型应用于乳腺癌死亡率的地理变异分析、肺癌死亡率与城市化和工业化程度之间相关性的生态研究,以及对1954年至1989年军事体检中观察到的胰岛素依赖型糖尿病(IDDM)累积患病率的时空变化分析。