Suppr超能文献

疾病风险时空变异的贝叶斯分析。

Bayesian analysis of space-time variation in disease risk.

作者信息

Bernardinelli L, Clayton D, Pascutto C, Montomoli C, Ghislandi M, Songini M

机构信息

Istituto Scienze Sanitarie Applicate-Universita di Pavia, Italy.

出版信息

Stat Med. 1995;14(21-22):2433-43. doi: 10.1002/sim.4780142112.

Abstract

The analysis of variation of risk for a given disease in space and time is a key issue in descriptive epidemiology. When the data are scarce, maximum likelihood estimates of the area-specific risk and of its linear time-trend can be seriously affected by random variation. In this paper, we propose a Bayesian model in which both area-specific intercept and trend are modelled as random effects and correlation between them is allowed for. This model is an extension of that originally proposed for disease mapping. It is illustrated by the analysis of the cumulative prevalence of insulin dependent diabetes mellitus as observed at the military examination of 18-year-old conscripts born in Sardinia during the period 1936-1971. Data concerning the genetic differentiation of the Sardinian population are used to interpret the results.

摘要

分析特定疾病的风险在空间和时间上的变化是描述性流行病学中的一个关键问题。当数据稀缺时,特定区域风险及其线性时间趋势的最大似然估计可能会受到随机变化的严重影响。在本文中,我们提出了一种贝叶斯模型,其中特定区域的截距和趋势都被建模为随机效应,并考虑它们之间的相关性。该模型是最初为疾病地图绘制提出的模型的扩展。通过分析1936 - 1971年期间在撒丁岛出生的18岁应征入伍者军事体检中观察到的胰岛素依赖型糖尿病的累积患病率来说明该模型。有关撒丁岛人群基因分化的数据用于解释结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验