Noebels J L
Department of Neurology, Baylor College of Medicine, Houston, Texas 77030, USA.
Ital J Neurol Sci. 1995 Feb-Mar;16(1-2):107-11. doi: 10.1007/BF02229082.
Studies in mutant mice are beginning to reveal important general principles regarding the heredity of the spike-wave cortical synchronization trait. First, a defect at a single gene locus is sufficient to produce a generalized spike-wave seizure disorder. Second, the EEG pattern itself is genetically heterogeneous, and can arise from mutations in at least five independent loci. Third, the intervening cellular excitability mechanisms underlying the generation of spike-wave cortical discharges are not identical. Fourth, each of the mutant genes gives rise to syndromes that can differ in their seizure frequency, sensitivity to antiepileptic drugs, and severity of the associated neurological phenotype. Fifth, primary defects can be distinguished from secondary cellular alterations resulting from pathological neuronal synchronization. The patterns of these secondary changes vary according to the specific mutant allele, and may give rise to distinctive secondary phenotypes. The reproducibility of these defined genetic models may facilitate age-dependent antiepileptic drug discovery by defining novel targets for therapy at different developmental stages of the seizure disorder.
对突变小鼠的研究开始揭示有关棘波皮质同步化特征遗传的重要一般原则。首先,单个基因位点的缺陷足以产生全身性棘波癫痫发作障碍。其次,脑电图模式本身在遗传上是异质性的,并且可由至少五个独立位点的突变引起。第三,棘波皮质放电产生过程中起干预作用的细胞兴奋性机制并不相同。第四,每个突变基因都会引发一些综合征,这些综合征在癫痫发作频率、对抗癫痫药物的敏感性以及相关神经表型的严重程度方面可能存在差异。第五,原发性缺陷可与病理性神经元同步化导致的继发性细胞改变区分开来。这些继发性变化的模式因特定的突变等位基因而异,并且可能产生独特的继发性表型。这些明确的遗传模型的可重复性可能通过确定癫痫障碍不同发育阶段的新治疗靶点来促进与年龄相关的抗癫痫药物发现。