Suppr超能文献

在大肠杆菌中产生的枯草芽孢杆菌果聚糖酶的纯化与特性分析

Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli.

作者信息

Wanker E, Huber A, Schwab H

机构信息

Institut für Biotechnologie, Technische Universität, Graz, Austria.

出版信息

Appl Environ Microbiol. 1995 May;61(5):1953-8. doi: 10.1128/aem.61.5.1953-1958.1995.

Abstract

The enzyme levanase encoded by the sacC gene from Bacillus subtilis was overexpressed in Escherichia coli with the strong, inducible tac promoter. The enzyme was purified from crude E. coli cell lysates by salting out with ammonium sulfate and chromatography on DEAE-Sepharose CL-6B, S-Sepharose, and MonoQ-Sepharose. The purified protein had an apparent molecular mass of 75,000 Da in sodium dodecyl sulfate-polyacrylamide gel electrophoresis, which is in agreement with that expected from the nucleotide sequence. Levanase was active on levan, inulin, and sucrose with Km values of 1.2 microM, 6.8 mM, and 65 mM, respectively. The pH optimum of the enzyme acting on inulin was 5.5, and the temperature optimum was 55 degrees C. Levanase was rapidly inactivated at 60 degrees C, but activity could be retained for longer times by adding fructose or glycerol. The enzyme activity was completely inactivated by Ag+ and Hg2+ ions, indicating that a sulfhydryl group is involved. A ratio of sucrase to inulinase activity of 1.2 was found for the purified enzyme with substrate concentrations of 50 mg/ml. The mechanism of enzyme action was investigated. No liberation of fructo-oligomers from inulin and levan could be observed by thin-layer chromatography and size exclusion chromatography-low-angle laser light scattering-interferometric differential refractive index techniques. This indicates that levanase is an exoenzyme acting by the single-chain mode.

摘要

由枯草芽孢杆菌sacC基因编码的果聚糖酶在大肠杆菌中利用强诱导型tac启动子进行了过量表达。该酶通过硫酸铵盐析以及在DEAE-琼脂糖CL-6B、S-琼脂糖和MonoQ-琼脂糖上的色谱法从大肠杆菌粗细胞裂解物中纯化得到。在十二烷基硫酸钠-聚丙烯酰胺凝胶电泳中,纯化后的蛋白质表观分子量为75,000 Da,这与核苷酸序列预期的一致。果聚糖酶对果聚糖、菊粉和蔗糖有活性,其Km值分别为1.2 μM、6.8 mM和65 mM。该酶作用于菊粉时的最适pH为5.5,最适温度为55℃。果聚糖酶在60℃时迅速失活,但通过添加果糖或甘油可使其活性保留更长时间。Ag⁺和Hg²⁺离子可使该酶活性完全失活,表明其活性涉及一个巯基。在底物浓度为50 mg/ml时,纯化后的酶的蔗糖酶与菊粉酶活性之比为1.2。对酶的作用机制进行了研究。通过薄层色谱法和尺寸排阻色谱-低角度激光光散射-干涉差示折光指数技术未观察到菊粉和果聚糖中果寡糖的释放。这表明果聚糖酶是一种以单链模式起作用的外切酶。

相似文献

1
Purification and characterization of the Bacillus subtilis levanase produced in Escherichia coli.
Appl Environ Microbiol. 1995 May;61(5):1953-8. doi: 10.1128/aem.61.5.1953-1958.1995.
2
Expression, purification, and characterization of an exo-beta-D-fructosidase of Streptococcus mutans.
J Bacteriol. 1987 Oct;169(10):4507-17. doi: 10.1128/jb.169.10.4507-4517.1987.
3
Purification and properties of levanase from Rhodotorula sp.
J Biotechnol. 1996 Apr 18;46(1):55-61. doi: 10.1016/0168-1656(95)00183-2.
4
Levanase from Bacillus subtilis hydrolyses β-2,6 fructosyl bonds in bacterial levans and in grass fructans.
Int J Biol Macromol. 2016 Apr;85:514-21. doi: 10.1016/j.ijbiomac.2016.01.008. Epub 2016 Jan 7.
5
Expression of the Bacillus subtilis levanase gene in Escherichia coli and Saccharomyces cerevisiae.
J Biotechnol. 1991 May;18(3):243-54. doi: 10.1016/0168-1656(91)90251-p.
6
Cloning and characterization of an exoinulinase from Bacillus polymyxa.
Biotechnol Lett. 2003 Jan;25(2):155-9. doi: 10.1023/a:1021987923630.
7
Intrinsic Levanase Activity of Bacillus subtilis 168 Levansucrase (SacB).
PLoS One. 2015 Nov 23;10(11):e0143394. doi: 10.1371/journal.pone.0143394. eCollection 2015.
8
Isolation and properties of levanase from Streptococcus salivarius KTA-19.
Infect Immun. 1983 Oct;42(1):231-6. doi: 10.1128/iai.42.1.231-236.1983.
9
Characterization of a novel endo-levanase and its gene from Bacillus sp. L7.
FEMS Microbiol Lett. 1997 Sep 1;154(1):23-8. doi: 10.1111/j.1574-6968.1997.tb12619.x.
10
Purification and characterization of levanase from Actinomyces viscosus ATCC 19246.
Infect Immun. 1987 Dec;55(12):3001-5. doi: 10.1128/iai.55.12.3001-3005.1987.

引用本文的文献

1
Biopolymer-Levan Characterization in Species Isolated from Traditionally Fermented Soybeans (Thua Nao).
ACS Omega. 2025 Jan 3;10(1):1677-1687. doi: 10.1021/acsomega.4c09641. eCollection 2025 Jan 14.
2
Influence of pH on Inulin Conversion to 2,3-Butanediol by 24: A Gene Expression Assay.
Int J Mol Sci. 2023 Sep 14;24(18):14065. doi: 10.3390/ijms241814065.
3
Strategy to combat biofilms: a focus on biofilm dispersal enzymes.
NPJ Biofilms Microbiomes. 2023 Sep 7;9(1):63. doi: 10.1038/s41522-023-00427-y.
4
5
Characterization of inulolytic enzymes from the Jerusalem artichoke-derived Glutamicibacter mishrai NJAU-1.
Appl Microbiol Biotechnol. 2022 Sep;106(17):5525-5538. doi: 10.1007/s00253-022-12088-6. Epub 2022 Jul 28.
9
Comparative Pangenomics of the Mammalian Gut Commensal .
Microorganisms. 2019 Dec 18;8(1):7. doi: 10.3390/microorganisms8010007.
10
Systematic unravelling of the inulin hydrolase from for efficient conversion of inulin to poly-(γ-glutamic acid).
Biotechnol Biofuels. 2019 Jun 13;12:145. doi: 10.1186/s13068-019-1485-9. eCollection 2019.

本文引用的文献

2
Statistical estimations in enzyme kinetics.
Biochem J. 1961 Aug;80(2):324-32. doi: 10.1042/bj0800324.
3
Microbial inulinases: fermentation process, properties, and applications.
Adv Appl Microbiol. 1983;29:139-76. doi: 10.1016/s0065-2164(08)70356-3.
4
Isolation and properties of levanase from Streptococcus salivarius KTA-19.
Infect Immun. 1983 Oct;42(1):231-6. doi: 10.1128/iai.42.1.231-236.1983.
5
Nucleotide sequence of the yeast SUC2 gene for invertase.
Nucleic Acids Res. 1983 Mar 25;11(6):1943-54. doi: 10.1093/nar/11.6.1943.
7
Cleavage of structural proteins during the assembly of the head of bacteriophage T4.
Nature. 1970 Aug 15;227(5259):680-5. doi: 10.1038/227680a0.
9
10
Purification and characterization of levanase from Actinomyces viscosus ATCC 19246.
Infect Immun. 1987 Dec;55(12):3001-5. doi: 10.1128/iai.55.12.3001-3005.1987.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验