Schlick T
New York University, New York, USA.
Curr Opin Struct Biol. 1995 Apr;5(2):245-62. doi: 10.1016/0959-440x(95)80083-2.
During the past year, a variety of diverse and complementary approaches have been presented for modeling superhelical DNA, offering new physical and biological insights into fundamental functional processes of DNA. Analytical approaches have probed deeper into the effects of entropy and thermal fluctuations on DNA structure and on various topological constraints induced by DNA-binding proteins. In tandem, new kinetic approaches--by molecular, Langevin and Brownian dynamics, as well as extensions of elastic-rod theory--have begun to offer dynamic information associated with supercoiling. Such dynamic approaches, along with other equilibrium studies, are refining the basic elastic-rod and polymer framework and incorporating more realistic treatments of salt and sequence-specific features. These collective advances in modeling large DNA molecules, in concert with technological innovations, are pointing to an exciting interplay between theory and experiment on the horizon.
在过去的一年里,人们提出了各种不同且互补的方法来对超螺旋DNA进行建模,从而为DNA的基本功能过程提供了新的物理和生物学见解。分析方法更深入地探究了熵和热涨落对DNA结构以及DNA结合蛋白诱导的各种拓扑限制的影响。与此同时,新的动力学方法——通过分子动力学、朗之万动力学和布朗动力学,以及弹性杆理论的扩展——已经开始提供与超螺旋相关的动态信息。这些动态方法以及其他平衡研究,正在完善基本的弹性杆和聚合物框架,并纳入对盐和序列特异性特征更实际的处理。在对大型DNA分子建模方面的这些共同进展,与技术创新一起,预示着理论与实验之间即将出现令人兴奋的相互作用。