Previs S F, Fernandez C A, Yang D, Soloviev M V, David F, Brunengraber H
Department of Nutrition, Case Western Reserve University, Cleveland, Ohio 44106, USA.
J Biol Chem. 1995 Aug 25;270(34):19806-15. doi: 10.1074/jbc.270.34.19806.
Mass isotopomer distribution analysis allows studying the synthesis of polymeric biomolecules from 15N, 13C-, or 2H-labeled monomeric units in the presence of unlabeled polymer. The mass isotopomer distribution of the polymer allows calculation of (i) the enrichment of the monomer and (ii) the dilution of the newly synthesized polymer by unlabeled polymer. We tested the conditions of validity of mass isotopomer distribution analysis of glucose labeled from [U-13C3]lactate, [U-13C3]glycerol, and [2-13C]glycerol to calculate the fraction of glucose production derived from gluconeogenesis. Experiments were conducted in perfused rat livers, live rats, and live monkeys. In all cases, [13C]glycerol yielded labeling patterns of glucose that are incompatible with glucose being formed from a single pool of triose phosphates of constant enrichment. We show evidence that variations in the enrichment of triose phosphates result from (i) the large fractional decrease in physiological glycerol concentration in a single pass through the liver and (ii) the release of unlabeled glycerol by the liver, presumably via lipase activity. This zonation of glycerol metabolism in liver results in the calculation of artifactually low contributions of gluconeogenesis to glucose production when the latter is labeled from [13C]glycerol. In contrast, [U-13C3]lactate appears to be a suitable tracer for mass isotopomer distribution analysis of gluconeogenesis in vivo, but not in the perfused liver. In other perfusion experiments with [2H5]glycerol, we showed that the rat liver releases glycerol molecules containing one to four 2H atoms. This indicates the operation of a substrate cycle between extracellular glycerol and liver triose phosphates, where 2H is lost in the reversible reactions catalyzed by alpha-glycerophosphate dehydrogenase, triose-phosphate isomerase, and glycolytic enzymes. This substrate cycle presumably involves alpha-glycerophosphate hydrolysis.
质量同位素异构体分布分析能够在存在未标记聚合物的情况下,研究由15N、13C或2H标记的单体单元合成聚合生物分子的过程。聚合物的质量同位素异构体分布可用于计算:(i)单体的富集情况,以及(ii)未标记聚合物对新合成聚合物的稀释作用。我们测试了用[U-13C3]乳酸、[U-13C3]甘油和[2-13C]甘油标记葡萄糖进行质量同位素异构体分布分析以计算糖异生产生的葡萄糖比例的有效性条件。实验在灌注大鼠肝脏、活大鼠和活猴中进行。在所有情况下,[13C]甘油产生的葡萄糖标记模式与由单一恒定富集的磷酸丙糖池形成葡萄糖的情况不相符。我们有证据表明,磷酸丙糖富集的变化是由于:(i)甘油单次通过肝脏时生理甘油浓度大幅下降,以及(ii)肝脏可能通过脂肪酶活性释放未标记的甘油。肝脏中甘油代谢的这种区域化导致当葡萄糖由[13C]甘油标记时,计算得出糖异生对葡萄糖产生的贡献人为地偏低。相比之下,[U-13C3]乳酸似乎是体内糖异生质量同位素异构体分布分析的合适示踪剂,但不适用于灌注肝脏。在其他用[2H5]甘油进行的灌注实验中,我们表明大鼠肝脏会释放含有一到四个2H原子的甘油分子。这表明细胞外甘油与肝脏磷酸丙糖之间存在底物循环,其中2H在由α-甘油磷酸脱氢酶、磷酸丙糖异构酶和糖酵解酶催化的可逆反应中丢失。这个底物循环可能涉及α-甘油磷酸水解。