Suppr超能文献

一种哺乳动物甘油-3-磷酸磷酸酶的鉴定:在胰腺β细胞和肝细胞代谢及信号传导中的作用

Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes.

作者信息

Mugabo Yves, Zhao Shangang, Seifried Annegrit, Gezzar Sari, Al-Mass Anfal, Zhang Dongwei, Lamontagne Julien, Attane Camille, Poursharifi Pegah, Iglesias José, Joly Erik, Peyot Marie-Line, Gohla Antje, Madiraju S R Murthy, Prentki Marc

机构信息

Departments of Nutrition and Biochemistry and Montreal Diabetes Research Center, Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Montréal, QC H1W 4A4, Canada;

Institute for Pharmacology and Toxicology and Rudolf Virchow Center for Experimental Biomedicine, University of Würzburg, Würzburg 97080, Germany;

出版信息

Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):E430-9. doi: 10.1073/pnas.1514375113. Epub 2016 Jan 11.

Abstract

Obesity, and the associated disturbed glycerolipid/fatty acid (GL/FA) cycle, contribute to insulin resistance, islet β-cell failure, and type 2 diabetes. Flux through the GL/FA cycle is regulated by the availability of glycerol-3-phosphate (Gro3P) and fatty acyl-CoA. We describe here a mammalian Gro3P phosphatase (G3PP), which was not known to exist in mammalian cells, that can directly hydrolyze Gro3P to glycerol. We identified that mammalian phosphoglycolate phosphatase, with an uncertain function, acts in fact as a G3PP. We found that G3PP, by controlling Gro3P levels, regulates glycolysis and glucose oxidation, cellular redox and ATP production, gluconeogenesis, glycerolipid synthesis, and fatty acid oxidation in pancreatic islet β-cells and hepatocytes, and that glucose stimulated insulin secretion and the response to metabolic stress, e.g., glucolipotoxicity, in β-cells. In vivo overexpression of G3PP in rat liver lowers body weight gain and hepatic glucose production from glycerol and elevates plasma HDL levels. G3PP is expressed at various levels in different tissues, and its expression varies according to the nutritional state in some tissues. As Gro3P lies at the crossroads of glucose, lipid, and energy metabolism, control of its availability by G3PP adds a key level of metabolic regulation in mammalian cells, and G3PP offers a potential target for type 2 diabetes and cardiometabolic disorders.

摘要

肥胖以及与之相关的甘油脂质/脂肪酸(GL/FA)循环紊乱,会导致胰岛素抵抗、胰岛β细胞功能衰竭和2型糖尿病。GL/FA循环的通量受3-磷酸甘油(Gro3P)和脂肪酰辅酶A可用性的调节。我们在此描述了一种哺乳动物Gro3P磷酸酶(G3PP),哺乳动物细胞中此前未知其存在,它可直接将Gro3P水解为甘油。我们确定,功能不明的哺乳动物磷酸乙醇酸磷酸酶实际上起G3PP的作用。我们发现,G3PP通过控制Gro3P水平,调节胰岛β细胞和肝细胞中的糖酵解与葡萄糖氧化、细胞氧化还原和ATP生成、糖异生、甘油脂质合成以及脂肪酸氧化,还调节β细胞中葡萄糖刺激的胰岛素分泌以及对代谢应激(如糖脂毒性)的反应。在大鼠肝脏中体内过表达G3PP可降低体重增加以及甘油的肝脏葡萄糖生成,并提高血浆高密度脂蛋白水平。G3PP在不同组织中表达水平各异,在某些组织中其表达会根据营养状态而变化。由于Gro3P处于葡萄糖、脂质和能量代谢的交叉点,G3PP对其可用性的控制在哺乳动物细胞中增加了一个关键的代谢调节层面,并且G3PP为2型糖尿病和心脏代谢紊乱提供了一个潜在靶点。

相似文献

1
Identification of a mammalian glycerol-3-phosphate phosphatase: Role in metabolism and signaling in pancreatic β-cells and hepatocytes.
Proc Natl Acad Sci U S A. 2016 Jan 26;113(4):E430-9. doi: 10.1073/pnas.1514375113. Epub 2016 Jan 11.
2
Glycerol-3-phosphate phosphatase/PGP: Role in intermediary metabolism and target for cardiometabolic diseases.
Biochimie. 2017 Dec;143:18-28. doi: 10.1016/j.biochi.2017.08.001. Epub 2017 Aug 5.
4
New Mammalian Glycerol-3-Phosphate Phosphatase: Role in β-Cell, Liver and Adipocyte Metabolism.
Front Endocrinol (Lausanne). 2021 Jul 13;12:706607. doi: 10.3389/fendo.2021.706607. eCollection 2021.
7
Glycerolipid/free fatty acid cycle and islet β-cell function in health, obesity and diabetes.
Mol Cell Endocrinol. 2012 Apr 28;353(1-2):88-100. doi: 10.1016/j.mce.2011.11.004. Epub 2011 Nov 15.
10
The Role of Fatty Acid Signaling in Islet Beta-Cell Adaptation to Normal Pregnancy.
Front Endocrinol (Lausanne). 2022 Jan 5;12:799081. doi: 10.3389/fendo.2021.799081. eCollection 2021.

引用本文的文献

1
Evaluating the impact of lipids in isolated islet research.
Front Endocrinol (Lausanne). 2025 Jul 2;16:1548596. doi: 10.3389/fendo.2025.1548596. eCollection 2025.
2
An organism-level quantitative flux model of energy metabolism in mice.
Cell Metab. 2025 Apr 1;37(4):1012-1023.e6. doi: 10.1016/j.cmet.2025.01.008. Epub 2025 Feb 20.
3
AMPK-regulated glycerol excretion maintains metabolic crosstalk between reductive and energetic stress.
Nat Cell Biol. 2025 Jan;27(1):141-153. doi: 10.1038/s41556-024-01549-x. Epub 2025 Jan 2.
5
Metabolic and Molecular Amplification of Insulin Secretion.
Adv Anat Embryol Cell Biol. 2024;239:117-139. doi: 10.1007/978-3-031-62232-8_5.
6
Exploring a Novel Role of Glycerol Kinase 1 in Prostate Cancer PC-3 Cells.
Biomolecules. 2024 Aug 13;14(8):997. doi: 10.3390/biom14080997.
8
Futile lipid cycling: from biochemistry to physiology.
Nat Metab. 2024 May;6(5):808-824. doi: 10.1038/s42255-024-01003-0. Epub 2024 Mar 8.
10
Effects of hepatic mitochondrial pyruvate carrier deficiency on lipogenesis and gluconeogenesis in mice.
iScience. 2023 Oct 12;26(11):108196. doi: 10.1016/j.isci.2023.108196. eCollection 2023 Nov 17.

本文引用的文献

3
Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase.
Nature. 2014 Jun 26;510(7506):542-6. doi: 10.1038/nature13270. Epub 2014 May 21.
4
α/β-Hydrolase domain-6-accessible monoacylglycerol controls glucose-stimulated insulin secretion.
Cell Metab. 2014 Jun 3;19(6):993-1007. doi: 10.1016/j.cmet.2014.04.003. Epub 2014 May 8.
5
Lipid droplet biogenesis.
Curr Opin Cell Biol. 2014 Aug;29:39-45. doi: 10.1016/j.ceb.2014.03.008. Epub 2014 Apr 14.
7
Lipid signals and insulin resistance.
Clin Lipidol. 2013 Dec;8(6):659-667. doi: 10.2217/clp.13.67.
10
AMPKα1 controls hepatocyte proliferation independently of energy balance by regulating Cyclin A2 expression.
J Hepatol. 2014 Jan;60(1):152-9. doi: 10.1016/j.jhep.2013.08.025. Epub 2013 Sep 6.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验